Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activities
J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 04-10
Abstract
Today the “Green” nanoparticle synthesis has been achieved using environmentally acceptable solvent systems and eco-friendly reducing and capping agents. The present study investigated the synthesis of silver nanoparticle using pomegranate fruit extract as reducing agent to synthesize silver nanoparticles. The formation of nanosized silver was confirmed by its characteristic surface plasmon absorption peak at around 460 nm in UV–vis spectra. The morphology and crystalline nature, were characterized by Scanning electron microscopy (SEM), energy dispersive X-ray analysis(EDAX) X-ray diffraction (XRD), and conform the active functional groups present in the synthesized silver molecule by Fourier transform infra-red (FTIR) spectroscopy. Moreover, their antibacterial activity has been tested against Bacillussubtilis, (Gram positive) and Klebsiella planticolae (Gram-negative). The approach of plant-mediated synthesis appearsto be cost efficient, eco-friendly and easy alternative to conventional methods of silver nanoparticles synthesis.
Full Text
Reference
Ahmad, N., Sharma, S., Singh, V. N., Shamsi, S. F., Fatma, A., and Mehta, B. R., Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach towards Weed Utilization. Biotechnology Research International, 8, (2011).
Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., Misra, A., Green synthesis of silver nanoparticles using seed extract of Jatropha curcas., Colloids and Surfaces A: Physicochem. Eng. Aspects, 348, 212-216 (2009).
http://dx.doi.org/10.1016/j.colsurfa.2009.07.021
Darroudi, M., Ahmad, M. B., Abdullah, A. H., Ibrahim, N. A., Green synthesis and characterization of gelatinbased and sugar-reduced silver nanoparticles., International Journal of Nanomedicine, 6, 569-574 (2011).
http://dx.doi.org/10.2147/IJN.S16867
Donaldson, K., Stone, V., MacNee, W., The toxicology of ultrafine particles. In: Maynard AL, Howards CV, editors. Particulate matter properties and effects upon health, OxfordBios., 115 (1999).
Dubeya, S. P., Lahtinenb, M., Sillanpa, M., Tansy fruit mediated greener synthesis of silver and gold nanoparticles., Process Biochemistry, 45,1065–1071 (2010).
http://dx.doi.org/10.1016/j.procbio.2010.03.024
Gade, A., Gaikwad, S., Tiwari, V., Yadav, A., Ingle, A., Rai M., Biofabrication of Silver Nanoparticles by Opuntia ficus-indica: In vitro AntibacterialActivity and Study of the Mechanism Involved in the Synthesis., Current Nanoscience, 6, 370-375 (2010).
http://dx.doi.org/10.2174/157341310791659026
Ghodake, G.S., Deshpande, N.G., Lee, Y.P., Jin, E.S., Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates., Colloids and Surfaces B: Biointerfaces, 75, 584-589 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2009.09.040
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., Chen, C., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf., Nanotechnology, 18, 105104-105115 (2007).
http://dx.doi.org/10.1088/0957-4484/18/10/105104
Ingle, A., Gade, A., Pierrat, S., Sonnichsen ,C., Rai M., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria., Curr. Nanosci., 4, 141- 144 (2008).
http://dx.doi.org/10.2174/157341308784340804
Jain, D., daima ,H. k., kachhwaha, S., Kothari, S., Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities, Digest journal of nanomaterials and biostructures., 3, 557-563 (2009) .
Jo, Y.K., Kim, B.H., and Jung, G., Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi., Plant Dis, 93,1037-1043 (2009).
http://dx.doi.org/10.1094/PDIS-93-10-1037
Kathiresan, K., Alikunhi, N.M., Pathmanaban, S., Nabikhan, A., and Kandasamy, S., Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coliand Aspergillus niger., Can. J. Microbiol., 56,( 2010).
Leela, A., and Vivekanandan, M., Tapping the unexploited plant resources for the synthesis of silver nanoparticles, African Journal of Biotechnology., 7, 3162- 3165(2008).
Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., Zhang, Q., Green synthesis of silver nanoparticles using Capsicum annum L. extract., Green Chem, 9, 825- 858 (2007).
http://dx.doi.org/10.1039/b615357g
Magudapatty, P., Gangopadhyayrans, P., Panigrahi, B.K., Nair, K.G.M., Dhara, S., Electrical transport studies of Ag nanoparticles embedded in glass matrix., Physica B ,299, 142–146 (2001).
http://dx.doi.org/10.1016/S0921-4526(00)00580-9
Mahitha, B., Raju, B. D. P., Dillip, G.R., Reddy, C. M., Mallikarjuna, k., Manoj, L., Priyanka, S., Rao, k. J., Sushma, N. J., Biosynthesis, characterization and antimicrobial studies of Ag NPs extract from Bacopa monniera whole plant., Digest Journal of Nanomaterials and Biostructures, 135-142 (2011).
Mukunthan, K.S., Elumalai, E.K., Patel, T.N., Murty, V.R., Catharanthus roseus: a natural source for the synthesis of silver nanoparticles., Asian Pacific Journal of Tropical Biomedicine, 270-274 (2011).
Natarajan, K., selvaraj, V. S., Murty, R., microbial production of silver nanoparticles, Digest journal of nanomaterials and biostructures., 1, 135- 140 (2010).
Prabhu, N., Divya, T.R., Gowri, K. Y., Siddiqua, S. A, and Puspha, D. J., Silver phytho nanoparticles and their antibacterial efficacy, Digest Journal of Nanomaterials and Biostructures., 5, 185-189 (2010).
Prusty, A. k., Preparation of silver nanoparticle by microorganism and its application in pharmacy, International journal of biomedical and advance research., (2011).
Rai, M., Yadav, A., Gade A., Current trends in phytosynthesis of metal nanoparticles, Crit. Rev. Biotechnol., 28, 277-284 (2008).
http://dx.doi.org/10.1080/07388550802368903
Sathishkumar, M., Sneha, K., Won, S. W., Cho, C.W., Kim, S., Yun, Y.S., Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline
silver particles and its bactericidal activity., Colloids and Surfaces B: Biointerfaces, 73, 332–338 (2009).
http://dx.doi.org/10.1016/j.colsurfb.2009.06.005
Shivshankar, S., Ahmad, A., Pasricha, R., Sastry, M., Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes., J. Mater. Chem, 13, 1822-1826 (2003).
http://dx.doi.org/10.1039/b303808b
Shivshankar, S., Ahmad, A., Rai, A., Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth., J. Colloid Interface Sci, 5, 496-502 (2004a).
http://dx.doi.org/10.1016/j.jcis.2004.03.003
Shivshankar, S., Ahmed, A., Ankamwar, B., Sastry, M., Rai, A., Singh, A. Biological synthesis of triangular gold nanoprisms., Nature, 3,482- 488 (2004b).
http://dx.doi.org/10.1038/nmat1152
Singh, A., Jain, D., Upadhyay D. M., Khandelwal, K and Verma, H.N., Green synthesis of silver nanoparticles using Argemone mexicana leaf extracts and evaluation of their antimicrobial activities, Digest Journal of Nanomaterials and Biostructures., 5, 483-489 (2010).
Smitha, S.L., Philip, D. and Gopchandrana, K.G., Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth., Spectrochimica Acta Part A ,74, 735 -739 (2009).
http://dx.doi.org/10.1016/j.saa.2009.08.007
Song, Y.S. and Kim, B.S., Rapid biological synthesis of silver nanoparticles using plant leaf extracts., Bioproc. Biosyst. Eng, 8, 224-230, (2008).