Antioxidant, Antimicrobial, and Potential Biomedical Applications of Green Synthesized Silver Nanoparticles Using Aloe barbadensis Root
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 97-104
Abstract
The present study focuses on the green synthesis and physicochemical characterization of silver nanoparticles (AgNPs) using Aloe barbadensis root extract. The green synthesized AgNPs were characterized using X-ray diffraction (XRD), UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The characteristic UV absorption peak at 328 nm confirmed the successful synthesis of AgNPs. The antioxidant activity of AgNPs was assessed through DPPH and hydrogen peroxide scavenging assays, with maximum free radical scavenging activities of 75.5 % and 73%, respectively, at 500 µg/mL. Antimicrobial activity of the AgNPs was demonstrated against both Gram-positive and Gram-negative bacteria, with a maximum zone of inhibition of 22 mm. Additionally, the synthesized AgNPs displayed potential biomedical applications. These findings highlight the potential of Aloe barbadensis root-mediated AgNPs for therapeutic, antimicrobial, and antioxidative applications, underscoring their relevance in sustainable nanotechnology and biomedicine.
Full Text
Reference
Alabdallah, N. M. and Hasan, M. M., Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants, Saudi J. Bio. Sci., 28(10), 5631–5639(2021).
https://doi.org/10.1016/j.sjbs.2021.05.081
Alharbi, N. S., Alsubhi, N. S. and Felimban, A. I., Green synthesis of silver nanoparticles using medicinal plants: Characterization and application, J. Radiat. Res. Appl. Sci., 15(3), 109–124(2022).
https://doi.org/10.1016/j.jrras.2022.06.012
Bhowmik, S., Datta, B. K., Saha, A. K., Chakma, P. and Mandal, N. C., Green Synthesis of Silver Nanoparticles from several NTFP Plants, Notulae Sci. Biol., 8(1), 106–111(2016).
https://doi.org/10.15835/nsb819742
Borges, A. R., Chan, B. R., Cetina, M. L., Ayora, T. G., Sansores, P. P., Gómez, C. J. and Cáceres, F. M., In vitro evaluation of anthraquinones from Aloe vera (Aloe barbadensis Miller) roots and several derivatives against strains of influenza virus, Ind. Crops Prod., 132, 468–475(2019).
https://doi.org/10.1016/j.indcrop.2019.02.056
Castillo, H. L., Alfaro, A. K., Ugalde, Á. J., Vega, F. L., Montes, O. V. G. and Vega, B. J. R., Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area, Nanomater., 10(9), 1763(2020).
https://doi.org/10.3390/nano10091763
Chakraborty, B., Pal, R., Ali, M., Singh, L. M., Rahman, D. S., Ghosh, S. K. and Sengupta, M., Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma, Cell. Mol. Immunol., 13(2), 191–205(2016).
https://doi.org/10.1038/cmi.2015.05
Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A.and Rai, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants, Appl. Microbio. Biotechnol., 90(5), 1609-1624 (2011).
https://doi.org/10.1007/s00253-011-3249-8
Fu, L. M., Shih, M. K., Hsieh, C. W., Ju, W. J., Tain, Y. L., Cheng, K. C., Hsu, J. H., Chen, Y. W. and Hou, C. Y., Design of an Integrated Microfluidic Paper-Based Chip and Inspection Machine for the Detection of Mercury in Food with Silver Nanoparticles, Biosens., 11(12), 491(2021).
https://doi.org/10.3390/bios11120491
Ghatage, M. M., Mane, P. A., Gambhir, R. P., Parkhe, V. S., Kamble, P. A., Lokhande, C. D. and Tiwari, A. P., Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties, Appl. Surf. Sci. Adv., 16, 100426(2023).
https://doi.org/10.1016/j.apsadv.2023.100426
Hu, Y., Ma, C., and Wang, J., Cytopathic Effect Assay and Plaque Assay to Evaluate in vitro Activity of Antiviral Compounds Against Human Coronaviruses 229E, OC43, and NL63, Bio-Protocol, 12(3) (2022).
https://doi.org/10.21769/bioprotoc.4314
Kavitha, N., Ramya, V., Kalaiselvi, V. and Vidhya, N., Synthesis and Characterization of Pure and Zn-doped Hydroxyapatite Nanoparticles by Microwave Irradiation Method, J. Environ. Nanotechnol., 9(2), 36-41(2020).
https://doi.org/10.13074/jent.2020.06.202411
Khan, R. U., Naz, S., Marzo, D., Dimuccio, M. M., Bozzo, G., Tufarelli, V., Losacco, C. and Ragni, M., Aloe vera: A Sustainable Green Alternative to Exclude Antibiotics in Modern Poultry Production, Antibio., 12(1), 44(2022).
https://doi.org/10.3390/antibiotics12010044
Kumar, H., Bhardwaj, K., Kuča, K., Kalia, A., Nepovimova, E., Verma, R. and Kumar, D., Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance, Nanomater., 10(4), 766(2020).
https://doi.org/10.3390/nano10040766
Lateef, A. and Adeeyo, A. O., Green Synthesis and Antibacterial Activities of Silver Nanoparticles Using Extracellular Laccase of Lentinus edodes, Notulae Sci. Biol., 7(4), 405–411(2015).
https://doi.org/10.15835/nsb749643
Minjares, F. R. and Femenia, A., Aloe Vera, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, Elsevier, 145-152(2019).
https://doi.org/10.1016/B978-0-12-812491-8.00020-5
Nalimu, F., Oloro, J., Kahwa, I. and Ogwang, P. E., Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox, Fu. J. Pharm. Sci., 7(1), 145(2021).
https://doi.org/10.1186/s43094-021-00296-2
Oladipo, I. C., Lateef, A., Azeez, M. A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Akinwale, A. S., Gueguim, K. E. B. and Beukes, L. S., Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species, Notulae Sci. Biol., 9(2), 196–203(2017).
https://doi.org/10.15835/nsb929938
Radha, M. H., and Laxmipriya, N. P., Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. Journal of Traditional and Complementary Medicine, 5(1), 21–26. (2015).
https://doi.org/10.1016/j.jtcme.2014.10.006
Rai, M., Yadav, A. and Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27(1), 76–83(2009).
https://doi.org/10.1016/j.biotechadv.2008.09.002
Raj, S., Trivedi, R. and Soni, V., Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. Surfaces, 5(1), 67–90. (2021).
https://doi.org/10.3390/surfaces5010003
Roy, A., Bulut, O., Some, S., Mandal, A. K. and Yilmaz, M. D., Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702 (2019).
https://doi.org/10.1039/c8ra08982e
Sagar, V., Patel, R. R., Singh, S. K. and Singh, M., Green synthesis of Silver nanoparticles: Methods, Biological applications, Delivery and Toxicity, Mater. Adv., 1(8), 525–553(2023).
https://doi.org/10.1039/D2MA01105K
Selvakumar, P., Kumaresan, M., Manikandan, P., Mayildurai, R. and Maruthavanan, T., Advances in Nanotechnology Applications for Food and Healthcare Engineering: Review, J. Environ. Nanotechnol., 13(4), 01-10(2024).
https://doi.org/10.13074/jent.2024.12.242663
Yan, X., He, B., Liu, L., Qu, G., Shi, J., Hu, L. and Jiang, G. (2018). Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 10(4), 557–564.
https://doi.org/10.1039/c7mt00328e
Zhang, Z., Mei, N., Chen, S., Guo, L. and Guo, X., Assessment of Genotoxic Effects of Selected Herbal Dietary Supplements, Academic Press, 883–892(2016).