Enhancing Mechanical, Moisture Resistance, and Fire-retardant Properties of Nelumbo nucifera Fiber/Epoxy Nanocomposites with Zinc Oxide Nanoparticles
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 253-265
Abstract
In recent years, an innovative material known as natural fiber-based nanocomposite has been developed. Furthermore, leveraging advancements in environmental nanotechnology, the eco-friendly composites exhibit potential for sustainable applications in lightweight structural materials and fire-resistant sectors, emphasizing reduced environmental impact and enhanced material efficiency. This investigation examined the influence of zinc oxide nanoparticles on moisture absorption, mechanical testing, fire retardant, and dynamic mechanical analysis of Nelumbo nucifera fiber (NNF) and epoxy (EP). The hand layup technique was implemented to create composite materials that comprised zinc oxide, NNF, and EP. The experiment revealed that the composites' modulus of elasticity (2117 MPa), tensile strength (48 MPa), and elongation at break (1.96%) were enhanced by increasing 12wt% zinc oxide (ZnO) nanoparticles. Conversely, the flexural strength and modulus of EP/NNF were 42 MPa and 2204 MPa, respectively. The modulus and flexural strength of EP/NNF/ZnO were 2814 MPa and 60 MPa, respectively, suggesting a 30.48% increase in bending strength. The swelling thickness and water absorption were substantially reduced (2.01% and 8.9%, respectively) as a result of the increased nanoparticle loading. To improve the dynamic mechanical properties (loss and storage modulus of 4.97 and 14.88 MPa) and performance (combustion rate of 18 mm/min, char residual of 31%) of composites, n-ZnO was incorporated. The X-ray diffraction (XRD) investigations showed that the 6 wt.% ZnO nanoparticles in the NNF fiber and EP samples still need to be more dispersed (2θ= 2.45º, intercorrelation of 24.52%, and d-spacing of 40.24 nm). The chemical composition and distribution pattern greatly impact the toughness. The combustion process is impeded by the fabrication of char shields with a higher concentration of nano zinc oxide, necessitating elevated temperatures for degradation.
Full Text
Reference
Almas, R., Memon, A., Sanbhal, N. and Khatri, Z., Physicochemical Characteristics and Dyeing Properties of Novel Cellulosic Fibers Derived from Sustainable Agricultural Waste, J. Chem. Soc. Pak., 46(2), 211–218 (2024).
Ananthi, P., Jemina, R., P. C., Priyalatha, S. and Prakash, C., Investigation on Influence of Blend Proportion on Comfort Characteristics of Bamboo/Lotus Knitted Fabrics, J. Nat. Fib., 20(1) 2153192(2023).
https://doi.org/10.1080/15440478.2022.2153192
Arumugam, C., Arumugam, G. S., Ganesan, A. and Muthusamy, S., Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites, ACS Omega, 6(51), 35256–35271(2021).
https://doi.org/10.1021/acsomega.1c02662
Bajwa, D. S., Holt, G., Stark, N., Bajwa, S. G., Chanda, S. and Quadir, M., Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene), Polym., 16(1), 36(2024).
https://doi.org/10.3390/polym16010036
Cheong, D. Y., Lee, S. W., Park, I., Jung, H. G., Roh, S., Lee, D., Lee, T., Lee, S., Lee, W., Yoon, D. S. and Lee, G., Bioinspired lotus fiber-based graphene electronic textile for gas sensing, Cellulose, 29(7), 4071–4082(2022).
https://doi.org/10.1007/s10570-022-04541-6
Dhama, A., Singh, P. and Azad, M. L., Lotus fibre: A sustainable alternative solution to silk fabric-A review, Man-Made Textiles in India, 52(2), 49–53 (2024).
Duygulu, N. E., Altinbay, A. and Ciftci, F., Antibacterial, Mechanical, and Thermal Properties of Ag, ZnO, TiO2 Reinforced PVA Nanocomposite Fibers, Chem. Select, 9(30), 02311(2024).
https://doi.org/10.1002/slct.202402311
Elango, A. H., Kumar, K. V, Loganathan, T. G., Priya, R. K., Shobana, S., Balasubramanian, M. and Dharmaraja, J., Characterization of alkali-treated Nelumbo nucifera fiber and properties of its reinforced composite, J. Nat. Fib., 19(13), 4949–4963(2022).
https://doi.org/10.1080/15440478.2020.1870640
Gokarneshan, N., Pachiyappan, K. M. and Sangeetha, K., Emerging research trends in new natural fibers-some insights, Green Chem. Sustainable Tex., x, 205-217(2021).
https://doi.org/10.1016/B978-0-323-85204-3.00002-6
Gul, W., Shah, S. R. A., Khan, A. and Pruncu, C. I., Characterization of zinc oxide-urea formaldehyde nano resin and its impact on the physical performance of medium-density fiberboard, Polym., 13(3), 1–12(2021).
https://doi.org/10.3390/polym13030371
Hou, C., Newton, M. A. A., Xin, B. and Li, T., Preparation and characterization of unidirectional water-transported bilayer PLA/ZnO-PAN/SPA nanofibrous membrane for wound healing, Colloids Surf. A Physicochem. Eng. Aspects, 676, 132308(2023).
https://doi.org/10.1016/j.colsurfa.2023.132308
Kour, G., Bartwal, A. S. and Sati, S. C., Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles, In 2D Func. Nanomater. Syn. Charact. Appli., 249–256 (2021).
https://doi.org/10.1002/9783527823963.ch13
Lan, X., Bian, C., Yang, Y., Zhang, Q. and Huang, G., Modified Epoxy Resin on the Burning Behavior and Mechanical Properties of Aramid Fiber Composite, Mater., 17(16), 4028(2024).
https://doi.org/10.3390/ma17164028
Liu, Y., Wang, Y., Yuan, X. and Prasad, G., The function of water absorption and purification of lotus fiber, Mater. Sci. Forum, 980, 162–167 (2020).
https://doi.org/10.4028/www.scientific.net/MSF.980.162
Mishra, T., Mandal, P., Rout, A. K. and Sahoo, D., A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle, Compos. Part C Open Access, 9, 100298(2022).
https://doi.org/10.1016/j.jcomc.2022.100298
Mohammed, M., Rahman, R., Mohammed, A. M., Betar, B. O., Osman, A. F., Adam, T., Dahham, O. S. and Gopinath, S. C. B., Improving hydrophobicity and compatibility between kenaf fiber and polymer composite by surface treatment with inorganic nanoparticles, Arabian J. Chem., 15(11), 104233(2022).
https://doi.org/10.1016/j.arabjc.2022.104233
Naveenkumar, R., Karthikeyan, B. and Senthilvelan, S., Synthesis of bioinspired lotus fiber infused PVA/TiO2 nanocomposites: characterization, thermal, and photocatalytic activity studies, Biomass Conver. Biorefinery, 15, 3571-3583(2023).
https://doi.org/10.1007/s13399-023-05231-4
Nguyen, N. H., Le, T. P., Duong, T. B. N., Le, V. K., Ho, H. H. D., Nguyen, L. H. T., Le, H. D. T., Mai, N. X. D., Nguyen, L. M. T. and Pham, N. K., Enhancement of Visible Light Antibacterial Activities of Cellulose Fibers from Lotus Petiole Decorated ZnO Nanoparticles, Appl. Biochem. Biotechnol., 196, 6442-6458(2024).
https://doi.org/10.1007/s12010-024-04868-9
Samaei, S. E., Amininasab, S., Salimi, F., Sheikhmozafari, M. J., Nadianmehr, R., Tabrizi, A. K. and Taban, E., Investigation of the effect of nanoparticles on the acoustic and flammability behavior of natural kenaf fibers, Iran Occupational Health, 19(1), 167–182(2022).
https://doi.org/10.52547/ioh.19.1.167
Sbardella, F., Lilli, M., Seghini, M. C., Bavasso, I., Touchard, F., Chocinski, A. L., Rivilla, I., Tirillò, J. and Sarasini, F., Interface tailoring between flax yarns and epoxy matrix by ZnO nanorods, Compos. Part A Appl. Sci. Manufact., 140 106156(2021).
https://doi.org/10.1016/j.compositesa.2020.106156
Silva, D. J., Barbosa, R. F. S., Souza, A. G., Ferreira, R. R., Camani, P. H. and Rosa, D. S., Morphological, UV blocking, and antimicrobial features of multifunctional cotton fibers coated with ZnO/Cu via sonochemistry, Mater. Chem. Phy., 286, 126210(2022).
https://doi.org/10.1016/j.matchemphys.2022.126210
Swain, P. K., Rout, A. K., Singh, J. K., Sahoo, D. and Mishra, S. K., Development and analysis of Fe-doped ZnO nanoparticle-infused sisal fiber reinforced hybrid polymer composites for high-performance sound absorption and thermal insulation applications, Ind. Crops Prod., 222, 119763(2024).
https://doi.org/10.1016/j.indcrop.2024.119763
Szadkowski, B., Piotrowska, M., Rybiński, P. and Marzec, A., Natural bioactive formulations for biodegradable cotton eco-fabrics with antimicrobial and fire-shielding properties, Int. J. Bio. Macromol., 237, 124143(2023).
https://doi.org/10.1016/j.ijbiomac.2023.124143
Tasnim, T., Rabbi, M. S., Adil, M. M. and Hasib, M. A., An experimental study on jute/banana fiber reinforced poly (vinyl alcohol) composites with nanofiller, J. Vinyl Additive Technol., 30(5), 1327–1340(2024).
https://doi.org/10.1002/vnl.22127
Thamba, N. B., Bhupalam, R., Duraiswamy, R. P., Kasthala, S. D. P., Samudrala, A., Venugopal, S. and Viswanathan., M. R, Investigation of Mechanical properties of a Novel Lotus fibre reinforced epoxy composites, J. Chem. Technol. Metal., 58(3), 425–434(2023).
https://doi.org/10.59957/jctm.v58i3.70
Trung, D. H., Improved fracture toughness of epoxy resin reinforced with micro-sized lotus fibers pre- and post-sodium hydroxide treatment, Vietnam J. Chem., 62, (2024).
https://doi.org/10.1002/vjch.202400148
Vajpayee, M., Dave, H., Singh, M. and Ledwani, L., Cellulase Enzyme Based Wet-Pretreatment of Lotus Fabric to Improve Antimicrobial Finishing with A. indica Extract and Enhance Natural Dyeing: Sustainable Approach for Textile Finishing, Chem. Select, 7(25), 00382(2022).
https://doi.org/10.1002/slct.202200382
Wang, Y., Wang, Z., Lu, Z., Jung, D. A. M., Fang, S., Zhang, Z., Wu, J. and Baughman, R. H., Humidity- And Water-Responsive Torsional and Contractile Lotus Fiber Yarn Artificial Muscles. ACS Appl. Mater. Interfaces, 13(5), 6642–6649(2021).
https://doi.org/10.1021/acsami.0c20456
Warrier, A. S., Krishnapriya, R., Harikrishnan, M. P., Nandhu, L. A. M., Anirudh, M. K. and Kothakota, A., Developing sustainable packaging alternatives for plastic carry bags: Utilizing reinforced lotus fiber with casein bio-coating for enhanced performance, Sustainable Chem. Pharm., 39 101564(2024).
https://doi.org/10.1016/j.scp.2024.101564
Yaseen, A., Umair, M., Rehan, Z. A., Alahmari, L. A. and Fayad, E., Fabrication of novel polyurethane matrix-based functional composites with enhanced mechanical performance, Res. Eng., 24, 103134(2024).
https://doi.org/10.1016/j.rineng.2024.103134
Zhang, J., Han, G., Zhang, Y., Gong, Y. and Jiang, W., Preparation of lotus nanofibers-alginate porous membranes for biomedical applications, BioResources, 15(3), 6471–6487(2020a).
https://doi.org/10.15376/biores.15.3.6471-6487
Zhang, Y., Xing, T., Huang, Z., He, A., Luo, Y., Hong, Y., Wang, M., Shi, Z., Tong, A., Qiao, S., Ke, G., Zhao, T., Chen, F. and Xu, W., An innovative strategy towards highly efficient flame-retardant silk, Chem. Eng. J., 489, 151356(2024b).