Green Synthesis and Multifunctional Applications of Moringa Oleifera-enhanced TiO₂ Nanocomposites
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 7-17
Abstract
This study investigates the green synthesis and detailed characterization of TiO₂ nanoparticles (TiO₂-NPs) doped with Moringa oleifera leaf (MOL) extract, aiming to explore their multifunctional applications. MOL extract acted as both a reducing and stabilizing agent during nanoparticle synthesis, thereby enhancing the physicochemical properties of the resulting composites. The photocatalytic activity of the synthesized TiO₂-MOL composites was evaluated through the degradation of methylene blue dye under solar irradiation, with optimal performance achieved at 4 wt.% MOL loading. Key parameters, including pH, catalyst dosage, dye concentration, and catalyst reusability, were systematically optimized to determine the most effective conditions. The optimum photocatalytic performance was observed at neutral pH, 150 mg catalyst loading, and a dye concentration of 1×10⁻⁴ M. Characterization techniques such as Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), light absorption capacity, and interactions between MOL bioactive compounds and TiO₂. Furthermore, the TiO₂-MOL composites exhibited notable antimicrobial, antibacterial, and anti-inflammatory properties, attributed to the synergistic effects between the photocatalyst and MOL's bioactive constituents. These findings suggest that MOL-doped TiO₂ nanocomposites hold significant promise for sustainable environmental remediation and biomedical applications.
Full Text
Reference
Abdel, S. Z. T., El-Akad, R. H., Elshamy, A. I., El-Gendy A. E. N. G., Wessjohann, L. A. and Farag, M. A., Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics, Food Chem., 399, 133948 (2023).
http://dx.doi.org/10.1016/j.foodchem.2022.133948
Adewi, E., Sesime, K., Hounsi, A., Amewotepe, K., Donkata, K., Dzagli, M. and Mohou, M., Recent Advances in Eco-Friendly Synthesis and Characterization of Zinc Oxide Nanoparticles from Ecological Sources for Biomedical and Photovoltaic Applications, Romanian J. Biophysics, 34(4) (2024).
https://www.doi.org/10.59277/RJB.2024.4.01
Fauzi, A. R., Imani, I, N., Kurnia, S, E., Suharyadi, E. and Aliah, H., Concentration Dependences of Photocatalytic Activity in Green-Synthesis Fe3O4/TiO2 Nanocomposite Utilizing Moringa Oleifera for Methylene Blue Dye Degradation, J. Phys. Conf. Ser., 2696(1), 012011 (2024).
http://dx.doi.org/10.1088/1742-6596/2696/1/012011
Devra, V. and Bairwa, P., Plant-mediated bimetallic nanoparticles synthesis for catalytic degradation of malachite green, Academia Eng., 1(3), (2024).
http://dx.doi.org/10.20935/acadeng7320
Ghareeb, A., Fouda, A., Kishk, R. M. and El, K. W. M., Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications, Microb. Cell Fact., 23(1), (2024).
http://dx.doi.org/10.1186/s12934-024-02609-5
Ghosh, T. S., Shanahan, F. and Toole, P. W., The gut microbiome as a modulator of healthy ageing, Nat. Rev. Gastroenterol. Hepatol., 19(9), 565–84 (2022).
http://dx.doi.org/10.1038/s41575-022-00605-x
Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead Publishing, 17–43 (2016).
http://dx.doi.org/10.1016/b978-0-08-100040-3.00002-x
Kashyap, P., Kumar, S., Riar, C.S., Jindal, N., Baniwal, P. and Guiné, R. P. F., Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications, Antioxid., 11(2), 402 (2022).
http://dx.doi.org/10.3390/antiox11020402
Kaur, A., Kumar, S., Kaur, H., Lotey, G. S., Singh, P. P. and Singh, G., Enhanced photocatalytic degradation and antimicrobial activities of biogenic Co3O4 nanoparticles mediated by fenugreek: sustainable strategies, Mater. Adv., 5(20), 8111–8131 (2024).
http://dx.doi.org/10.1039/d4ma00795f
Mani, M., Murgaiyan, T. and Krishnan, P. K., Structural performance evaluation of hybrid polymer composites for critical infrastructure pick-and-place robot grippers using silica nanoparticles, Int. J. Struct. Integrity., 14(6), 932–945 (2023).
http://dx.doi.org/10.1108/ijsi-06-2023-0052
Mani, M., Thiyagu, M. and Krishnan, P. K., Effects of moisture absorption analysis of kevlar/carbon/glass/polyurethane epoxy hybrid sandwich composites with nano silicon particles, Adv. Mater. Process. Technol., 22, 1–15 (2024).
http://dx.doi.org/10.1080/2374068x.2024.2342048
Murgaiyan, T., Alagumalai, V., Krishnamoorthy, Y., Kumar, P., Veerasimman, A. and Rajendran, S., Quasi-static puncture shear loading characteristics of GLARE/nanoclay laminates with various indenters, Forces Mech., 17, 100295 (2024).
http://dx.doi.org/10.1016/j.finmec.2024.100295
Natrayan, L., Gorti, J. V., Swamy, N., Chidurala S., Kaliappan, S. and Velmurugan, G., Eco-Friendly Zinc Oxide Nanoparticles from Moringa Oleifera Leaf Extract for Photocatalytic and Antibacterial Applications, Clean Technol. Environ. Policy, 26(4), (2024).
https://doi.org/10.1007/s10098-024-02814-1
Panhwar, S., Importance and Analytical Perspective of Green Synthetic Strategies of Copper, Zinc, and Titanium Oxide Nanoparticles and their Applications in Pathogens and Environmental Remediation, Curr. Anal. Chem., 17(8), 1169–81 (2021).
http://dx.doi.org/10.2174/15734110mtexeodml3
Pedraza, H. J., Elghandour, M. M. M. Y., Khusro, A, Salem, M. Z. M., Camacho-Diaz, L. M. and Barbabosa-Pliego, A. Assessment on bioactive role of Moringa oleifera leaves as anthelmintic agent and improved growth performance in goats, Trop. Anim. Health Prod., 53(2), 318 (2021).
http://dx.doi.org/10.1007/s11250-021-02745-9
Perumalsamy, H., Balusamy, S. R., Sukweenadhi, J., Nag, S., MubarakAli, D. and El-Agamy, F. M. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications, J. Nanobiotechnol. , 22(1), 71 (2024).
http://dx.doi.org/10.1186/s12951-024-02332-8
Rakkini, A.M., Libu, R. S. R., Vatin, N. I., Devanesan, S., Selvankumar, T. and Mary, A. R. L. Enhancing Photocatalytic Activity and Biological Applications of TiO2 Nanoparticles Using Moringa Oleifera Leaf Extract, Waste Biomass Valorization, 15(11), 6523–6537 (2024).
http://dx.doi.org/10.1007/s12649-024-02670-6
Ramanathan, K., Antognini, D., Combes, A., Paden, M., Zakhary, B., Ogino, M., Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases, Lancet Respir. Med., 8(5), 518–526 (2020).
http://dx.doi.org/10.1016/s2213-2600(20)30121-1
Narayanan, S. V. P., Kathirason, S. G., Elango, P., Subramanian, R. R., Sivagurusundar and Gurusamy, A., Emilia sonchifolia leaf extract-mediated green synthesis, characterization, in vitro biological activities, photocatalytic degradation and in vivo Danio rerio embryo toxicity of copper nanoparticles, RSC Adv., 13(24), 16724–40 (2023).
http://dx.doi.org/10.1039/d3ra00454f
Sivagami, S., Kavitha, R., Satanathan, S., Rajesh, J., Narenkumar, J. and Parthipan, P., Multicomponent one-pot synthesis, characterization and antimicrobial screening of 2 cyanoimino-6-aryl-4-(6-methoxynaphthalen-2-yl)-3,4-dihydro-1H-pyrimidines, Process Biochem., 123, 63–69 (2022).
http://dx.doi.org/10.1016/j.procbio.2022.10.032
Stoica, M., Bichescu, C. I., Crețu, C. M., Dragomir, M., Ivan, A. S. and Podaru, G. M., Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging, Foods, 13(19), 3027 (2024).
http://dx.doi.org/10.3390/foods13193027
Suba, K., Padmavathy, V., Anisha, V., Malini, S., Kavitha, R. and Sasikruba, S., Biogenic Photodegradation of Methylene Blue Dye using Azadirachta Indica (Neem) Leaf Extract: A Novel Green Catalyst Approach, J. Environ. Nanotechnol., 13(4), (2024).
https://doi.org/10.13074/jent.2024.12.2441093
Taha, G. and Ibrahim, N., Moringa-TiO2 Nano Composite (MT2) For Removal of Methylene Blue (MB) And Methyl Orange (MO) Dyes from their Aqueous Solutions, Al-Azhar Bull. Sci., 30(1), 91–103 (2019).
http://dx.doi.org/10.21608/absb.2019.67896
Tiwari, P. A, Pandey, I., Zamboni, P., Gemmati, D., Kanase, A. and Singh, A., Traditional Herbal Remedies with a Multifunctional Therapeutic Approach as an Implication in COVID-19 Associated Co-Infections, Coatings, 10(8), 761 (2020).
http://dx.doi.org/10.3390/coatings10080761
Verma, V., Al, D. M., Singh, J., Rawat, M., Kordy, M. G. M. and Shaban, M., A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications, Polym., 14(7), 444 (2022).
http://dx.doi.org/10.3390/polym14071444
Xu, Y. B., Chen, G. L. and Guo, M. Q., Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids, Antioxid., 8(8), 296 (2019).