Open Access

Impact of Cassia-derived Zinc Oxide Nanoparticles on the Reproduction, Development, and Viability of Bactrocera dorsalis

Seema Ramniwas, Marwadi University Research Center, Faculty of Sciences, Marwadi University, Rajkot, GJ, India Aanchal Sharma, anchal018@gmail.com
University Centre for Research and Development, Chandigarh University, Gharuan, PB, India
Saranagat Singh Watts University Centre for Research and Development, Chandigarh University, Gharuan, PB, India
Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, PB, India


J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 247-252

https://doi.org/10.13074/jent.2025.03.2511186

PDF


Abstract

The fruit fly species Bactrocera dorsalis (Hendel, 1912) (Diptera: Tephritidae) is one of the most destructive pests impacting agricultural fruit production across tropical regions. The present study investigates the impact of Cassia fistula seed extract and its biosynthesized zinc oxide nanoparticles (ZnO NPs) on various developmental and reproductive parameters of B. dorsalis. The biosynthesis of ZnO NPs was confirmed through a shift in visual appearance and UV–Vis spectroscopy, with a prominent absorption peak at 372 nm, indicative of successful nanoparticle production. Fruit flies fed on Cassia seed-derived ZnO NP-supplemented food, ranging from 0.5 to 3.0 ml concentrations, significantly reduced egg-laying capacity and hatchability compared to the control group. Fecundity decreased from 37.12 ± 6.13 eggs in the control group to as low as 5.24 ± 0.67 eggs at the highest concentration, and hatchability declined from 99.6% to 3.4% at 3.0 ml. Viability estimation indicated a substantial decrease in adult emergence rates, from 99.9% in the control to 5.1% at 3.0 ml. Furthermore, the duration of development was prolonged with an increase in ZnO NP concentration, from 19 days in the control group to 21 days at 3.0 ml. Significant reductions were observed in pupal weight and length across treated groups, with weights decreasing from 15.10 ± 0.35 mg in control to 8.21 ± 0.05 mg at the highest concentration. This study demonstrates the potential of Cassia seed-derived ZnO nanoparticles as a bio-control agent in reducing reproductive success and development rates of B. dorsalis, highlighting their application in integrated pest management strategies.

Full Text

Reference


Akheela, P., Santhoshkumar, T. and Thania, S. V., First Report of Bactrocera Dorsalis (Hendel) (Diptera, Tephritidae) on the White-Fleshed Dragon Fruit Selenicereus Undatus (Haworth) D.R. Hunt (Cactaceae) in India, Entomon, 49(2), 283–86 (2024).

https://doi.org/10.33307/entomon.v49i2.1190

Damayanti, R. D., Emantis, R., Wawan, A. S. and Tundjung, T. H., Isolation and Identification of Fungi from Bactrocera Dorsalis as Candidate Entomopathogenic Fungi, Jurnal Ilmiah Biologi Eksperimen Dan Keanekaragaman Hayati, 11(1), 13–22 (2024).

https://doi.org/10.23960/jbekh.v11i1.359

Doshi, M., Alexander, B., Craig, J. Neal, Nour, I., Udit, K., Aadithya, J., Tamil, S. S., Sushanth, S., Alicia, W., Robert, B., Sudipta, S. and Bradley, J. W., Exposure to Nanoceria Impacts Larval Survival Life History Traits and Fecundity of Aedes Aegypti, PLoS Negl. Trop. Dis., 14(9), 1–29(2020).

https://doi.org/10.1371/journal.pntd.0008654

Ekesi, S., Peterson, W. N. and Chiou, L. C., Adaptation to and Small-Scale Rearing of Invasive Fruit Fly Bactrocera Invadens (Diptera: Tephritidae) on Artificial Diet, Ann. Entomol. Soc. Am. 100(4), 562–567(2007).

https://doi.org/10.1603/0013-8746(2007)100[562:ATASRO]2.0.CO;2

Guan H., Defu, C., Jia, Y. and Xiaocan, L., A Novel Photodegradable Insecticide: Preparation, Characterization and Properties Evaluation of Nano-Imidacloprid, Pestic. Biochem. Physiol., 92, (2), 83–91(2008).

https://doi.org/10.1016/j.pestbp.2008.06.008

Hamed, R., Ruwa, Z., Obeid and Rana, A. H., Plant Mediated-Green Synthesis of Zinc Oxide Nanoparticles: An Insight into Biomedical Applications, Nanotechnol. Rev., 12(1), 20230112 (2023).

https://doi.org/10.1515/ntrev-2023-0112

Hasnidawani, J.N., H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim and E.S. Ali., Synthesis of ZnO Nanostructures Using Sol-Gel Method, Procedia Chem., 19, 211–16(2016).

https://doi.org/10.1016/j.proche.2016.03.095

Khattak, M., Taj, A. K., Moona, N., Muhammad, S. I., Hajra, H., Asif, K., Elshikh, M. S., Dunia, A. A. F. and Muhammad A., Exploration of Reducing and Stabilizing Phytoconstituents in Arisaema Dracontium Extract for the Effective Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial and Toxicological Proprties, Microb. Pathogen., 192, 106711(2024).

https://doi.org/10.1016/j.micpath.2024.106711

Liu, X., Jian, W., Xingyu, G., L. Xiao, Y. Zou, Z. Shan, Xianli, L., Ying, F., Yu, F. and Fengqin, C., The Impact of Predation Risks on the Development and Fecundity of Bactrocera Dorsalis Hendel, Insects, 15(5), 322(2024).

https://doi.org/10.3390/insects15050322

Malaikozhundan, B., Baskaralingam V., Vijayakumar, S. and Merlin P. T., Bacillus Thuringiensis Coated Zinc Oxide Nanoparticle and Its Biopesticidal Effects on the Pulse Beetle, Callosobruchus Maculatus, J. Photochem. Photobiol., B, 174, 306–14(2017).

https://doi.org/10.1016/j.jphotobiol.2017.08.014

Mazhar, M. W., Ishtiaq, M., Maqbool, M., Arshad, A. M. A. A., Alhelaify, S. S., Alharthy, O. M., Shukry, M and Samy, M. S., Green Synthesis of Anethole-Loaded Zinc Oxide Nanoparticles Enhances Antibacterial Strategies against Pathogenic Bacteria, Sci. Rep., 14(1), 24671(2024).

https://doi.org/10.1038/s41598-024-74163-4

Dargah, M. M., Pedram, P., Barjas, G. C., Delattre, C., Nesic, A., Santagata, G., Cerruti, P. and Moeini, A., Biomimetic Synthesis of Nanoparticles A Comprehensive Review on Green Synthesis of Nanoparticles with a Focus on Prosopis Farcta Plant Extracts and Biomedical Applications, Adv. Colloid Interface Sci., 332(2024).

https://doi.org/10.1016/j.cis.2024.103277

Murali, M., Gowtham, H. G., Shilpa, N., Brijesh, S. S., Aiyaz, M., Sayyed, R. Z., Chandan, S., Achar, R. R., Silina, E., Stupin, V., Manturova, N., Shati, A. A., Alfaifi, M. Y., Elbehairi, S. E. I. and Shivaprasad, k., Zinc Oxide Nanoparticles Prepared through Microbial Mediated Synthesis for Therapeutic Applications: A Possible Alternative for Plants, Front. Microbiol., 14, 1227951(2023).

https://doi.org/10.3389/fmicb.2023.1227951

Prasad, R., Bhattacharyya, A. and Quang, D. N., Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives, Front. Microbiol., 8, 01014(2017).

https://doi.org/10.3389/fmicb.2017.01014

Rajula, J., Afroja, R. and Krutmuang, P., Entomopathogenic Fungi in Southeast Asia and Africa and Their Possible Adoption in Biological Control, Biol. Control, 151, 104399(2020).

https://doi.org/10.1016/j.biocontrol.2020.104399

Rouhani, M., Samih, M. A. and S. Kalantari, Efecto Insecticida de Nanopartículas de Plata y Zinc Contra Aphis Nerii Boyer de Fonscolombe (Hemiptera: Aphididae), Chil. J. Agric. Res., 72(4), 590–94 (2012).

https://doi.org/10.4067/S0718-58392012000400020

Sharma, A. and Ramniwas, S. Effects of Pichia Kudriavzevii on Development, Larval Mortality and Fecundity of Zaprionus Indianus (Diptera: Drosophilidae) at Different Temperatures, Int. J. Trop. Insect Sci., 44(4), 2127–2137(2024).

https://doi.org/10.1007/s42690-024-01322-5

Singh, K., Kochar, E. and N. G. Prasad, Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila Melanogaster Selected for Resistance to Cold Shock, PLoS ONE, 10(6), 0129992(2015).

https://doi.org/10.1371/journal.pone.0129992

Yusof, S., Othman, N. W., Dzomir, A. Z. M., Mohammed, M. A., Zuki, A. A. and Yaakop, S., New Insight into Nucleotide Changes on Irradiated Bactrocera Dorsalis (Hendel), A Pest of Horticultural Importance, Trop. Life Sci. Res., 35(2), 289–307(2024).

https://doi.org/10.21315/tlsr2024.35.2.14

Taddei, A., Reisenzein, H., Mouttet, R., Lethmayer, C., Egartner, A., Richard, Blümel, A. G. S., Heiss, C., Pohn, C. and Reynaud, P., Morphological and Molecular Identification Protocols for Bactrocera Dorsalis: A Joint Validation Study, PhytoFrontiers, 3(1), 186–98(2023).

https://doi.org/10.1094/phytofr-03-22-0031-fi

Yadav, S., Nadar, T., Lakkakula, J. and Wagh, N. S., Biogenic Synthesis of Nanomaterials: Bioactive Compounds as Reducing, and Capping Agents, Environ. Sci. Eng., 2070, 147–188(2024).

https://doi.org/10.1007/978-3-031-45956-6_6

Contact Us

Powered by

Powered by OJS