Applications of Magneto-responsive Smart Materials in Environmental Nanotechnology: Opportunities and Challenges
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 491-504
Abstract
There is a growing interest in magneto-responsive innovative materials for environmental nanotechnology applications owing to their unique ability to respond to external magnetic fields. These materials, typically nanoparticles, have unique properties and are great candidates for diverse environmental applications such as safe water and air treatments, pollutants reclamation, soil remediation, and renewable energy. This paper discusses the broad application areas where magneto-responsive materials can help to solve significant environmental challenges and demonstrates their potential to offer an efficient, economical, and sustainable route to address these challenges. At the same time, the paper addresses the possibilities and difficulties they imply (e.g., material stability, environmental safety, scalability, etc.). It also presents future directions in developing biodegradable and eco-friendly materials, integration with the Internet of Things (IoT) for real-time monitoring, and the need for interdisciplinary collaborations. Utilizing the multi-functionalities delivered through magneto-responsive transient materials could play a role in environmental remediation and sustainability, heralding a potential era of cleaner, greener future.
Full Text
Reference
Ahamed, R., Choi, S. B. and Ferdaus, M. M., A state of art on magneto-rheological materials and their potential applications, J. Intell. Mater. Syst. Struct., 29(10), 2051–2095 (2018).
https://doi.org/10.1177/1045389X18754350
Atalay, S. and Ersöz, G., Review on Catalysis in Advanced Oxidation Processes, Springer briefs in molecular science, 35–58 (2016).
https://doi.org/10.1007/978-3-319-28950-2_4
Bakr, M., Eldomuaty, A., Mansour, T., Hammad, H., Dawood, M. M. snd Nabil, T., Performance of Silicon Oil-Based Magneto-rheological Fluids Used for MR Dampers: An Experimental Approach, Micro Nanosyst., 14(1), 83–90 (2021).
https://doi.org/10.2174/1876402913666210525100816
Beni, A. A. and Jabbari, H., Nanomaterials for Environmental Applications, Results Eng., 15, 100467 (2022).
https://doi.org/10.1016/j.rineng.2022.100467
Blachowicz, T. and Ehrmann, A., Most recent developments in electrospun magnetic nanofibers: A review, J. Eng. Fibers Fabr., 15, 1-14 (2020).
https://doi.org/10.1177/1558925019900843
Cardoso, F., Rita, M. F. C. and Silva, C. G. E. D., Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment, Nanomater., 11(8), 2045 (2021).
https://doi.org/10.3390/nano11082045
Chen, J., Xia, L. and Cao, Q., Water-based ferrofluid with tunable stability and its significance in nuclear wastewater treatment, J. Hazard. Mater., 434, 128893 (2022).
https://doi.org/10.1016/j.jhazmat.2022.128893
Chhetri, T., Cunningham, G., Suresh, D., Shanks, B., Kannan, R., Upendran, A. and Afrasiabi, Z., Wastewater Treatment Using Novel Magnetic Nanosponges, Water, 14(3), 505 (2022).
https://doi.org/10.3390/w14030505
Deotale, A. J., Singh, U., Songera, D., Tiwari, M. K. and Nandedkar, R. V., Utilization of Fe₂O₃ Nanoparticles Synthesized by Novel ASH Supported Method in Arsenic Adsorption from the Contaminated Water, Macromol. Symp., 400(1), 2100114 (2021).
https://doi.org/10.1002/masy.202100114
Elmobarak, W. F. and Almomani, F., Application of magnetic nanoparticles for the removal of oil from oil-in-water emulsion: Regeneration/reuse of spent particles, J. Pet. Sci. Eng., 203, 108591 (2021).
https://doi.org/10.1016/j.petrol.2021.108591
Fatmawati, E., Halizah, S. N., Chusna, N. M., Yuliana, F. and Sunaryono, S., Crystal Structure, Morphology, and Magnetic Properties of Magnetic Nanocomposites with Iron Oxide Core and Zinc Oxide/Titanium Oxide Shell, J. Metastable Nanocryst. Mater., 38, 1–14 (2024).
https://doi.org/10.4028/p-6oel85
Ghasemi, S., Khosravi, A. and Hashemifard, S. A., Magnetic Nanocomposites for Environmental Remediation, The Royal Society of Chemistry eBooks, 133–160 (2021).
https://doi.org/10.1039/9781839165283-00133
Gupta, N., Pant, P., Gupta, C., Goel, P., Jain, A., Anand, S. and Pundir, A., Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review, Mater. Res. Innovations, (2017).
https://doi.org/10.1080/14328917.2017.1334846
Huang, Y. and Keller, A. A., Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles, PLoS ONE, 15(9), e0239137 (2020).
https://doi.org/10.1371/journal.pone.0239137
Hughes, D. L., Afsar, A., Laventine, D. M., Shaw, E. J., Harwood, L. M. and Hodson, M. E., Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology, Chemosphere, 209, 480–488 (2018).
https://doi.org/10.1016/j.chemosphere.2018.06.121
Jain, R., Recent advances of magnetite nanomaterials to remove arsenic from water, RSC Advances, 12(50), 32197–32209 (2022).
https://doi.org/10.1039/d2ra05832d
Jin, B., Zhao, D., Yu, H., Liu, W., Zhang, C. and Wu, M., Rapid degradation of organic pollutants by Fe₃O₄@PDA/Ag catalyst in advanced oxidation process, Chemosphere, 307, 135791 (2022).
https://doi.org/10.1016/j.chemosphere.2022.135791
Kim, H., Zhang, G., Wu, M., Guo, J. and Nam, C., Highly efficient and recyclable polyolefin-based magnetic sorbent for oils and organic solvents spill cleanup, J. Hazard. Mater., 419, 126485 (2021).
https://doi.org/10.1016/j.jhazmat.2021.126485
Kim, I., Yang, H. M., Park, C. W., Yoon, I. H. and Sihn, Y., 20 - Environmental applications of magnetic nanoparticles, Woodhead Publishing Series in Electronic and Optical Materials, Magnetic Nanoparticle-Based Hybrid Materials, Elsevier, 529–545 (2021).
https://doi.org/10.1016/B978-0-12-823688-8.00021-1
Li, X., You, J., Li, J., Wang, Z., Zhao, Y., Xu, J., Duan, M., Zhang, H., Progress of Copper‐based Nanocatalysts in Advanced Oxidation Degraded Organic Pollutants, ChemCatChem, 16(6), e202301108 (2023).
https://doi.org/10.1002/cctc.202301108
Liang, H., Wei, Y. and Ji, Y., Magnetic‐responsive Covalent Adaptable Networks, Chem. Asian J. , 18(5), (2023).
https://doi.org/10.1002/asia.202201177
Lin, H., Wang, Z., Liu, C. and Dong, Y., Technologies for removing heavy metal from contaminated soils on farmland: A review, Chemosphere, 305, 135457 (2022).
https://doi.org/10.1016/j.chemosphere.2022.135457
Liu, Y., Zhan, Y., Tian, L., Zhao, J. and Sun, J., Study on the anticorrosion and antifouling performance of magnetically responsive self-healing polyurethane coatings, Progress in Organic Coatings, 186, 108047 (2023).
https://doi.org/10.1016/j.porgcoat.2023.108047
Maggy N. B. Momba, Lerato, B., Lizzy Mpenyana-Monyatsi, & Ilunga Kamika., Nanotechnology-based filters for cost-effective drinking water purification in developing countries, Water Purification, 169–208 (2017).
https://doi.org/10.1016/b978-0-12-804300-4.00005-8
Mahadevan, R., Palanisamy, S. and Sakthivel, P., Role of nanoparticles as oxidation catalyst in the treatment of textile wastewater: Fundamentals and recent advances, Sustainable Chem. Environ., 4, 100044 (2023).
https://doi.org/10.1016/j.scenv.2023.100044
Mathur, S., Singh, D. and Ranjan, R., Remediation of heavy metal(loid) contaminated soil through green nanotechnology, Front. Sustainable Food Syst., 6, 932424 (2022).
https://doi.org/10.3389/fsufs.2022.932424
Mazeeva, A., Masaylo, D., Razumov, N., Konov, G. and Popovich, A., 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal–Polymer Composites: A Review, Mater., 16(21), 6928 (2023).
https://doi.org/10.3390/ma16216928
Mboyi, A. V., Ilunga, K. and Momba, M. N. B., Nanoscale development and its application in multidisciplinary area: An African perspective, Afr. J. Biotechnol., 16(5), 193–208 (2017).
https://doi.org/10.5897/AJB2016.15254
Mohamed, M. H. M. and Al-Harbi, L. M., Polymeric Nanocomposites for Environmental and Industrial Applications, Int. J. Mol. Sci., 23(3), 1023 (2022).
https://doi.org/10.3390/ijms23031023
Morales, A. C. G., Alarcón-Herrera, M. T., Astudillo-Sánchez, P. D., Lozano-Morales, S. A., Licea-Jiménez, L. and Reynoso-Cuevas, L., Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater, Water, 13(18), 2511–1, (2021).
https://doi.org/10.3390/w13182511
Mou, X., Ali, Z., Li, S. and He, N., Applications of Magnetic Nanoparticles in Targeted Drug Delivery System, J. Nanosci. Nanotechnol., 15(1), 54–62, (2015).
https://doi.org/10.1166/JNN.2015.9585
Municoy, S., Álvarez, E. M. I., Antezana, P. E., Galdopórpora, J. M., Olivetti, C., Mebert, A. M., Foglia M. L., Tuttolomondo, M. V., Alvarez, G. S., Hardy, J. G. and Desimone, M, F., Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery, Int. J. Mol. Sci., 21(13), 4724 (2020).
https://doi.org/10.3390/ijms21134724
Namdeti, R., Gaddala, B. R., Nageswara, R. L., Muayad, A. A. Q., Doaa, S. M. S. A., Lakhayar, A. A. A, Noor, M. S. Q. and Arlene, A. J., Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions, J. Environ. Earth Sci., 7(1), 92–102 (2024).
https://doi.org/10.30564/jees.v7i1.7476
Oehlsen, O., Cervantes, R. S. I., Cervantes, A. P. and and Medina-Velo, I. A., Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives, ACS Omega, 7(4), 3134–50 (2022).
https://doi.org/10.1021/acsomega.1c05631
Omidian, H. and Wilson, R. L., Enhancing Hydrogels with Quantum Dots, J. Compos. Sci., 8(6), 203 (2024).
https://doi.org/10.3390/jcs8060203
Osial, M., Pregowska, A., Warczak, M. and Giersig, M., Magnetorheological fluids: A concise review of composition, physicochemical properties, and models, J. Intell. Mater. Syst. Struct., 34(16), 1864–84 (2023).
https://doi.org/10.1177/1045389X231157357
Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., Argirusis, C., Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review, ChemEngineering, 6(1), 8, (2022).
https://doi.org/10.3390/chemengineering6010008
Panta, S. R., Munjuluru, S., Kishorekumar, N. and Jayakiran, R. E., Smart materials revolutionizing automotive technology: applications, challenges, and future directions, Int. J. Eng. Trends Technol., 72(8), 353-63, (2024).
https://doi.org/10.14445/22315381/IJETT-V72I8P133
Parker, A. C., Maryon, O. O., Kaffash, M. T., Jungfleisch, M. B. and Davis, P. H., Optimizing magnetic force microscopy resolution and sensitivity to visualize nanoscale magnetic domains, J. Vis. Exp., 185, e64180 (2022).
Patra, S., Ajayan, P. M. and Narayanan, T. N., Dynamic mechanical analysis in materials science: The Novice’s Tale, Oxford Open Mater. Sci., 1(1), 1-12 (2020).
https://doi.org/10.1093/oxfmat/itaa001
Pengpeng, L., Xue, F., Xin, L., Li, X., Fan, Y., Zhao, J., Tian, L., Sun, J. and Ren, L., Anticorrosion Coating with Heterogeneous Assembly of Nanofillers Modulated by a Magnetic Field, ACS Appl. Mater. Interfaces, 15(5), 7538–51, (2023).
https://doi.org/10.1021/acsami.2c19132
Philip, J., Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions, Adv. Colloid Interface Sci., 311, 102810 (2022).
https://doi.org/10.1016/j.cis.2022.102810
Phillips, J. P., Yazdani, S., Highland, W. and Cheng, R., A High Sensitivity Custom-Built Vibrating Sample Magnetometer, Magnetochemistry, 8(8), 84 (2022).
https://doi.org/10.3390/magnetochemistry8080084
Rasheed, T., Magnetic nanomaterials: Greener and sustainable alternatives for the adsorption of hazardous environmental contaminants, J. Cleaner Prod., 362, 132338 (2022).
https://doi.org/10.1016/j.jclepro.2022.132338
Renjith, P. K., Sarathchandran, C., Chandramohanakumar, N. and Sekkar, V., Silica aerogel composite with inherent superparamagnetic property: a pragmatic and ecofriendly approach for oil spill clean-up under harsh conditions, Mater. Today Sustainability, 24, 100498 (2023).
https://doi.org/10.1016/j.mtsust.2023.100498
Saeed, M. U., Hussain, N., Sumrin, A., Shahbaz, A., Noor, S., Bilal, M., Aleya, L. and Iqbal, H. M. N., Microbial bioremediation strategies with wastewater treatment potentialities – A review, The Science of The Total Environment, 818, 151754 (2021).
https://doi.org/10.1016/j.scitotenv.2021.151754
Saharan, P., Chaudhary, G. R., Mehta, S. K. and Umar, A., Removal of Water Contaminants by Iron Oxide Nanomaterials, J. Nanosci. Nanotechnol., 14(1), 627–43 (2014).
https://doi.org/10.1166/JNN.2014.9053
Samia, B. H. S., Chen, Z., An, C., Lee, K. and Zaker, A., Buoyant oleophilic magnetic activated carbon nanoparticles for oil spill cleanup, Cleaner Chem. Eng., 2, 100028, (2022).
https://doi.org/10.1016/j.clce.2022.100028
Sanyal, S., Park, S., Chelliah, R., Yeon, S. J., Barathikannan, K., Vijayalakshmi, S., Jeong, Y. and Rubab, M., Oh D. H., Emerging Trends in Smart Self-Healing Coatings: A Focus on Micro/Nanocontainer Technologies for Enhanced Corrosion Protection, Coatings, 14(3), 324 (2024).
https://doi.org/10.3390/coatings14030324
Saviano, L., Brouziotis, A., Suarez, E. P., Siciliano, A., Spampinato, M., Guida, M., Trifuoggi, M., Del Bianco, D., Carotenuto, M., Romano, S. V., Lofrano, G. and Libralato, G., Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review, Mol., 28(17), 6185 (2023).
https://doi.org/10.3390/molecules28176185
Shabelskaya, N., Sulima, S., Sulima, E., Medennikov, O., Kulikova, M., Kolesnikova, T. and Sushkova, S., Study of the Possibility of Using Sol–Gel Technology to Obtain Magnetic Nanoparticles Based on Transition Metal Ferrites, Gels, 9(3), 217 (2023).
https://doi.org/10.3390/gels9030217
Sharif, U., Sun, B., Hussain, S., Ibrahim, D. Sh., Adewale, O. O., Ashraf, S. and Bashir F., Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review, Mater., 14(22), 7025 (2021).
https://doi.org/10.3390/ma14227025
Shukla, S., Khan, R., Daverey, A., Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review, Environ. Technol. Innovation, 24, 101924 (2021).
https://doi.org/10.1016/j.eti.2021.101924
Singh, H., Bhardwaj, N., Arya, S. K. and Khatri, M., Environmental impacts of oil spills and their remediation by magnetic nanomaterials, Environ. Nanotechnol. Monit. Manage., 14, 100305 (2020).
https://doi.org/10.1016/j.enmm.2020.100305
Singh, M., Dhiman, S., Debnath, N. and Das, S., Magnetic nanoparticles and their application in sustainable environment, Elsevier eBooks, 457–83 (2022).
https://doi.org/10.1016/B978-0-12-824547-7.00007-2
Tan, S., Transmission Electron Microscopy: Applications in Nanotechnology, IEEE Nanatechnol. Mag., 15(1), 26–37 (2020).
https://doi.org/10.1109/MNANO.2020.3037432
Taran, M., Safaei, M., Karimi, N. and Almasi, A., Benefits and Application of Nanotechnology in Environmental Science: an Overview, Biointerface Res. Appl. Chem., 11(1), 7860–7870, (2020).
https://doi.org/10.33263/briac111.78607870
Tiwa, Y., Crespy, D. and Rohwerder, M., Corrosion‐Responsive Self‐Healing Coatings, Adv. Mater., 35(47), (2023).
https://doi.org/10.1002/adma.202300101
Umair, M., Zafar, H., Cheema, M. and Usman, M., New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review, J. Environ. Manage., 349, 119553 (2024).
https://doi.org/10.1016/j.jenvman.2023.119553
Vicente-Martínez, Y., Caravaca, M., Farh, S. E., Hernández-Córdoba, M. and López-García, I., Magnetic nanoparticles for removing inorganic arsenic species from waters: A proof of concept for potential application, Adv. Sample Prep., 6, 100064 (2023).
https://doi.org/10.1016/j.sampre.2023.100064
Wei, H., Wang, Y., Guo, J., Shen, N. Z., Jiang, D., Zhang, X., Yan, X., Zhu, J., Wang, Q., Shao, L., Lin, H., Wei, S. and Guo, Z., Advanced micro/nanocapsules for self-healing smart anticorrosion coatings, J. Mater. Chem. A, 3(2), 469–80, (2014).
https://doi.org/10.1039/C4TA04791E
Wu, S., Hu, W., Ze, Q., Sitti, M. and Zhao, R., Multifunctional magnetic soft composites: a review, Multifunct. Mater., 3(4), 042003 (2020).
https://doi.org/10.1088/2399-7532/abcb0c
Xia, N., Jin, D., Pan, C., Zhang, J., Yang, Z., Su, L., Zhao, J., Wang, L. and Zhang, L., Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization, Nat. Commun., 13(1), 7514 (2022).
https://doi.org/10.1038/s41467-022-35212-6
Xu, Y., Liao, G. and Liu, T., Magneto-Sensitive Smart Materials and Magnetorheological Mechanism, Nanofluid Flow in Porous Media, IntechOpen, 1-25 (2019).
http://dx.doi.org/10.5772/intechopen.84742
Yaashikaa, P. R. and Kumar, P. S., Fabrication and characterization of magnetic nanomaterials for the removal of toxic pollutants from water environment: A review, Chemosphere, 303, 135067 (2022).
https://doi.org/10.1016/j.chemosphere.2022.135067
Yadav, N., Garg, V. K., Chhillar, A. K. and Rana, J. S., Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review, Chemosphere, 280, 130792 (2021).
https://doi.org/10.1016/j.chemosphere.2021.130792
Yu, T., Chen, H., Hu, T., Feng, J., Xing, W., Tang, L. and Tang, W., Recent advances in the applications of encapsulated transition-metal nanoparticles in advanced oxidation processes for degradation of organic pollutants: A critical review, Appl. Catal., B, 342, 123401–1, (2023).