Open Access

Synthesis of Nitrogen Doped Titanium Dioxide (TiO2) and its Photocatalytic Performance for the Degradation of Indigo Carmine Dye

A. Selvaraj, Department of Chemistry, Chikkanna Government Arts College, Tirupur, Tamilnadu, India. R. Parimiladevi, Department of Chemistry, Chikkanna Government Arts College, Tirupur, Tamilnadu, India. K.B. Rajesh rajeshkb@gmail.com
Department of Chemistry, Chikkanna Government Arts College, Tirupur, Tamilnadu, India.


J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 35-41

https://doi.org/10.13074/jent.2013.02.121026

PDF


Abstract

Nitrogen (N) doped TiO2 were synthesized by thermal decomposition of the mixture of TiO2 and urea at 500 C. Optical and structural properties of N doped TiO2 were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV–visible diffusion reflectance spectroscopy (UV-DRS) and scanning electron microscopic (SEM) techniques. XRD showed that anatase phase was converted into rutile phase while increasing the content of urea. FTIR studies revealed that number of hydroxyl group on TiO2 surface decreases with increasing the concentration of nitrogen. SEM studies were carried out for the morphological features and size of TiO2 par ticles. DRS data showed a red shift in absorption edge and band gap become narrower while increasing the concentration of nitrogen. The photocatalytic activity was evaluated for photodegradation of indigo carmine dye under UV light irradiation.

Full Text

Reference


Akurati, K.K., Bhattachariya,S.S., Winteser, M. and Hahn, H. Synthesis, Characterization and sintering of nanocrystalline titania powders produced by chemical vapour synthesis. J. Phys. D; Appl. Phys., 39, 2248- 2254 (2006).

http://dx.doi.org/10.1088/0022-3727/39/10/037

Augustynski, J.The role of the surface intermediates in the photoelectron chemical behavior of anatase and rutile TiO2. Electrochim. Acta, 38, 43-46 (1993).

http://dx.doi.org/10.1016/0013-4686(93)80008-N

Bangkedphol, S., Keenan, H.E., Davidson, C.M., Sakultantimetha, A., Sirisaksoontorn, W. and Songsasen, A. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst. J Hazard Mater 184, 533–537 (2010).

http://dx.doi.org/10.1016/j.jhazmat.2010.08.068

Barka, N., Assabbane, A., Nounah, A. and Ichou Y.A.Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres, J. Hazard. Mater., 152, 1054–1059 (2008).http://dx.doi.org/10.1016/j.jhazmat.2007.07.080

Carp, O., Huisman, C. L. and Reller, A. Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32, 33-177 (2004).

http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001

Chainarong, S., Sikong, L., Pavasupree, S. and NiyomwasS. Synthesis and Characterization of Nitrogen-doped TiO2 Nanomaterials for Photocatalytic Activities under Visible Light, Energy Procedia, 9, 418 – 427 ( 2011 ).

http://dx.doi.org/10.1016/j.egypro.2011.09.046

Cheng, X., Yu, X., Xing, Z. and Wan, J. Enhanced Photocatalytic Activity of Nitrogen Doped TiO2 Anatase Nano-Particle under Simulated Sunlight Irradiation, Energy Procedia, 16, 598–605 (2012).

http://dx.doi.org/10.1016/j.egypro.2012.01.096

Choi, W.Y., Termin, A. and Hoffmann, M.R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669– 13679 (1994).

http://dx.doi.org/10.1021/j100102a038

Fuerte, A., Alonso, M.D.H., Maira, A.J., Arias, A.M. Garc, M.F., Conesa, J.C., Soria, J. and Munuera, G. Nanosize Ti–W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlighttype excitation, J. Catal., 212,1–9 (2002).

http://dx.doi.org/10.1021/j100102a038

Fujishima, A., Rao, T.N. and Tryk, D.A. Titanium dioxide photocatalysis, J. Photochem.Photobiol., 1 1–21 (2000).

http://dx.doi.org/10.1016/S1389-5567(00)00002-2

Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69–96 (1995).

http://dx.doi.org/10.1021/cr00033a004

Horst, K., Shanmugasundaram, S., Marcin, J. and Dariusz, M. A Low-Band Gap, Nitrogen-Modified Titania Visible-Light Photocatalyst. J Phys Chem C,111, 11445-11449 (2007).

http://dx.doi.org/10.1021/jp066457y

Irie, H., Watanabe, Y. and Hashimoto, K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett., 32, 772–773 (2003).

http://dx.doi.org/10.1246/cl.2003.772

Jenkins, C.L. Textile dyes are potential hazards, Arch. Environ. Health, 40, 7–12 (1978).

Jeon, M.S., Yoon, W.S., Joo, H., Lee, T.K. and Lee, H. Preparation and characterization of a nano-sized Mo/ Ti mixed photocatalyst, Appl. Surf. Sci., 165, 209–216 (2000).

http://dx.doi.org/10.1016/S0169-4332(00)00495-5

Jing, L., Chang, J.L., Yue, K.L. and Rong G.D. Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel. Surf Coat Tech 205,557–564 (2010).

http://dx.doi.org/10.1016/j.surfcoat.2010.07.030

Kamal, M.S.K. and Mohamed, I.Z.J. Synthesis of highsurface area titania powders via basic hydrolysis of titanium (IV) isopropoxide, Powder Technol., 92 , 233-239 (1997).

http://dx.doi.org/10.1016/S0032-5910(97)03250-6

Li, H., Li, J., and Huo, Y. Highly Active TiO2: N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions, J. Phys. Chem. B 110 1559-1565 (2006). 

http://dx.doi.org/10.1021/jp055830j

Mekprasart, W. and Pecharapa, W. Synthesis andcharacterization of nitrogen-doped TiO2 and its photocatalytic activity enhancement under visible light, Energy Procedia , 9, 509 – 514 (2011).

http://dx.doi.org/10.1016/j.egypro.2011.09.058

Mozia, S., Tomaszewska, M., Kosowska, B., Grzmil, B., Morawski, A.W., Kalucki, K. Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation, Appl. Catal. B, 55, 195–200 (2005).

http://dx.doi.org/10.1016/j.apcatb.2004.09.019

Navio, J.A., Cerrlos, C.C. and Real, C.J. Photo-induced Transformation, upon UV Illumination in Air, of Hyponitrite Species N2O2 2- Preadsorbed on TiO2 Surface, Surf. Interface Anal. 24,355-359 (1996).

http://dx.doi.org/10.1002/(SICI)1096-9918(199605)24:5<355::AID-SIA122>3.0.CO;2-D

Ohtani, B., Ogawa, Y. and Nishimoto, S. Photocatalytic Activity of Amorphous Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions, J. Phys. Chem B, 101, 3746-3752 (1997).

http://dx.doi.org/10.1021/jp962702+

Rattanakam, R. and Supothina, S., Visible-light-sensitive N-doped TiO2 photocatalysts prepared by a mechanochemical method: effect of a nitrogen source, Res Chem Intermed, 35, 263–269 (2009).

http://dx.doi.org/10.1007/s11164-009-0030-z

Shanmugasundaram, S., Marcin, J. and Horst, K.J., Visible light activity and photoelectrochemical properties of nitrogen doped TiO2 , Phys. Chem. B, 108 19384- 19387 (2004).

http://dx.doi.org/10.1021/jp046857q

Shi, J.W., Zheng, J.T. and Wu, P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles, J. Hazard. Mater., 161, 416–422 (2009).http://dx.doi.org/10.1016/j.jhazmat.2008.03.114

Shrivasatava,V.S. Removal of indigo carmine dye by using nanosized semiconducting photocatalyst in aqueous media, Adv. Appl. Sci. Res., 2, 280- 286 (2011).

Tian, H., Ma, J., Li , K. and Li, J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, Ceram. International, 35, 1289–1292 (2009).

http://dx.doi.org/10.1016/j.ceramint.2008.05.003

Vohra, A., Goswami, D.Y., Deshpande, D.A. and Block, S.S. Enhanced photocatalytic disinfection of indoor air, Appl. Catal., B 64, 57–65 (2006).

http://dx.doi.org/10.1016/j.apcatb.2005.10.025

Wang, Y., Li, J., Peng, P., Lu, T. and Wang, L. Preparation of S-TiO2 photocatalyst and photodegradation of L-acid under visible light, Appl. Surf. Sci., 254, 5276–5280
(2008).

http://dx.doi.org/10.1016/j.apsusc.2008.02.050

Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z., Manivannan, A., Zhi, M., Li, M. and Wu, N. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts, J. Amer. Chem. Soc., 131, 12290-12297 (2009)

.http://dx.doi.org/10.1021/ja903781h

Xu, J., Ao, Y., Fu, D. and Yuan, C. Synthesis of fluorinedoped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light, J Phys. Chem. Sol., 69, 2366– 2370 (2008).

http://dx.doi.org/10.1016/j.jpcs.2008.03.017

Xu, J., Ao, Y. and Chen, M. Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light, Mater. Lett., 63, 2442–2444 (2009).

http://dx.doi.org/10.1016/j.matlet.2009.08.031

Yoshida, O., Harada, T., Miyagawa, M. and Kato, T. Bladder cancer in workers of the dyeing industry, Igaku No. Ayumi 79, 421–422 (1971).

Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T. and Zhang, L.Z. Effect of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater. 14, 3808–3816 (2002).

http://dx.doi.org/10.1021/cm020027c

 

Contact Us

Powered by

Powered by OJS