Geopolymer Concrete: An Alternative to Conventional Concrete for Sustainable Construction
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 218-225
Abstract
Geopolymer concrete is a sustainable alternative to conventional concrete, offering significant environmental protection and carbon reduction benefits. This study presents a comparative analysis between Ordinary Portland Cement (OPC)-based conventional concrete (CC) and geopolymer concrete (GPC) utilizing ultrafine fly ash (UFFA) and ultrafine ground-granulated blast furnace slag (UFGGBS) as binders, with identical binder-to-aggregate ratios. GPC was developed using sodium hydroxide and sodium silicate as alkaline activators, while CC relied on OPC as its binding agent. The mechanical properties and durability of GPC were evaluated under controlled conditions. The results demonstrated that GPC is comparable to CC in terms of strength and durability. Moreover, GPC reduces CO2 emissions by incorporating industrial by-products such as fly ash and slag as binders, replacing energy-intensive Portland cement and significantly lowering greenhouse gas emissions. This underscores the potential of GPC as a sustainable, eco-friendly material for modern construction, supporting environmental conservation and sustainability.
Full Text
Reference
Aliabdo, A. A., Abd, E. A. E. M. and Salem, H. A., Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance, Constr. Build. Mater., 123, 581–593 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.07.043
Banu, S. J., Kumutha, R. and Vijai, K., A review on durability studies of geopolymer concrete and mortar under aggressive environment, Int. J. Civ. Eng., 4(5), 19-22 (2017).
https://doi.org/10.14445/23488352/IJCE-V4I5P108
Bisarya, Abhishek, R. K. Chouhan, Manish Mudgal, and S. S. Amritphale. "Fly ash based geopolymer concrete a new technology towards the greener environment: A review, Int. J. Innov. Res. Sci. Eng. Technol., 4(12), 12178-12186 (2015).
Chowdhury, S., Mohapatra, S., Gaur, A., Dwivedi, G. and Soni, A., Study of various properties of geopolymer concrete – A review, Mater. Today, Proc., 46, 5687–5695 (2021).
https://doi.org/10.1016/j.matpr.2020.09.835
Glavind, M., Sustainability of cement, concrete and cement replacement materials in construction, Sustainability of Construction Materials, Elsevier, 120–147 (2009).
https://doi.org/10.1533/9781845695842.120
Harshit, S., Vikas, S., Ashish, K. Y. and Ashok, K. T., Ultrafine GGBS and Fly Ash as Cement Replacement for Sustainable Concrete, J. Environ. Nanotechnology., 13(3), 25–30 (2024).
https://doi.org/10.13074/jent.2024.09.242659
Heah, C. Y., Liew, Y. M., Al-Bakri, A. M. M. and Kamarudin, H., Fire Resistant Properties of Geopolymers: A Review, Key Eng. Mater., 660, 39–43 (2015).
https://doi.org/10.4028/www.scientific.net/KEM.660.39
Jaiswal, A. K., Agrawal, R. and Trivedi, M. K., Development of high-performance concrete using ultrafine fly ash, J. Phys. Conf. Ser., 2484(1), 012022 (2023).
https://doi.org/10.1088/1742-6596/2484/1/012022
Kara, D. M. P., Craeye, B., Snellings, R., Kazemi-Kamyab, H., Loots, M., Janssens, K. and Nuyts, G., Effect of ultra-fine fly ash on concrete performance and durability, Constr. Build. Mater., 263, 120493 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.120493
Kumar, I., Vikas, S., Tiwari, S. and Tiwari., A. K., Ultrafine GGBS and Ultrafine Fly Ash as Cement Replacement to Mitigate the Environmental Impact of Concrete, J. Environ. Nanotechnology., 13(2), 168–175 (2024).
https://doi.org/10.13074/jent.2024.06.242660
Kumar, M. P., Mini, K. M. and Rangarajan, M., Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance, Constr. Build. Mater., 182, 249–257 (2018).
https://doi.org/10.1016/j.conbuildmat.2018.06.096
Mehta, P. K., High-performance, high-volume fly ash concrete for sustainable development, Proceedings of the international workshop on sustainable development and concrete technology, Iowa State University, Ames, IA, USA, 3-14 (2004).
Obla, Karthik H., Russell L. Hill, Michael DA Thomas, Surali G. Shashiprakash, and Olga Perebatova. Properties of concrete containing ultra-fine fly ash, Mater. J., 100(5), 426-433 (2003).
Oyebisi, S., Olutoge, F., Kathirvel, P., Oyaotuderekumor, I., Lawanson, D., Nwani, J., Ede, A. and Kaze, R., Sustainability assessment of geopolymer concrete synthesized by slag and corncob ash, Case Stud. Constr. Mater., 17, e01665 (2022).
https://doi.org/10.1016/j.cscm.2022.e01665
Pacheco, T. F., Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes, In: Handbook of Alkali-Activated Cements, Mortars and Concretes. Elsevier, 1–16 (2015).
https://doi.org/10.1533/9781782422884.1
Palomo, A., Grutzeck, M. W. and Blanco, M. T., Alkali-activated fly ashes, Cem. Concr. Res., 29(8), 1323–1329 (1999).
https://doi.org/10.1016/S0008-8846(98)00243-9
Shah, A., Optimum utilization of GGBS in fly ash based geopolymer concrete, International Conference on Research and Innovations in Science Engineering Technology, 1, 431-440(2017).
Shaikh, F. U. A. and Supit, S. W. M., Compressive strength and durability properties of high-volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA), Constr. Build. Mater., 82, 192–205 (2015).
https://doi.org/10.1016/j.conbuildmat.2015.02.068
Shetty, M. S., Concrete technology: theory and practice, Eight revised edition. S. Chand, Ram Nagar, New Delhi, (2019).
Tanildizi, M. and Gökalp, İ. Joint Types and Applications in Rigid Pavements. Innov. Res. Eng., 33, 471–496, (2023).
Xu, H. and Van, D. J. S. J., The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 59(3), 247–266 (2000).