Effect of Nanoclay and Surface Treatment on Mechanical Properties of Fish Tail Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 177-184
Abstract
The addition of nanofiller into the fiber-reinforced composites aims to enhance adhesion between the fiber surface and the polymer matrix and improve strength. This paper examines the mechanical properties and morphological characteristics of fishtail palm empty fruit bunch (FTPEFB) fiber to evaluate its suitability as a reinforcing material in epoxy composites. The objective of this study was to evaluate the effects of Nanoclay reinforcement and surface treatment of FTPEFB fiber on the performance of fiber-reinforced composites. The FTPEFB fibers were prepared in three forms: untreated, alkali-treated, and benzoyl chloride-treated. Composites were prepared using these fibers with different Nanoclay levels: 0, 2, 4, and 6 wt. % through the hand layup method. Various mechanical characteristics were assessed, including tensile strength, flexural properties, impact resistance, and hardness of the surface. Furthermore, morphology was examined using Scanning electron microscopy to investigate how chemical processing affected the treated and untreated fibers. For alkali-treated FTPEFB fiber-reinforced epoxy composites, the best overall characteristics were achieved with 6 wt. % Nanoclay content, yielding a tensile strength of 77.52 MPa, a tensile modulus of 5.24 GPa, and a flexural strength of 142.8 MPa; the impact strength increased by 23.51%, and the hardness improved by 10.76% when compared to composites without Nanoclay fillers.
Full Text
Reference
Amuthakkannan, P., Manikandan, V., Jappes, J. T. W. and Uthayakumar, M., Effect of fiber length and fiber content on mechanical properties of short basalt fiber reinforced polymer matrix composites, Mater. Phy. Mech., 16, 107–117 (2013).
Ashori, A. and Nourbakhsh, A., Effects of Nanoclay as a Reinforcement Filler on the Physical and Mechanical Properties of Wood-based Composite, J. Compos. Mater., 43(18), 1869–1875 (2009).
https://doi.org/10.1177/0021998309340936
Bachtiar, D., Sapuan, S. M. and Hamdan, M. M., The Influence of Alkaline Surface Fiber Treatment on the Impact Properties of Sugar Palm Fiber-Reinforced Epoxy Composites, Polym. Plast. Technol. Engg., 48(4), 379–383 (2009).
https://doi.org/10.1080/03602550902725373
Belouadah, Z., Ati, A. and Rokbi, M., Characterization of new natural cellulosic fiber from Lygeum spartum L, Carb. Polym., 134, 429–437 (2015).
https://doi.org/10.1016/J.CARBPOL.2015.08.024
Bhagat, V. K., Biswas, S. and Dehury, J., Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy-based hybrid composites, Polym. Compos., 35(5), 925–930 (2014).
https://doi.org/10.1002/PC.22736
Biagiotti, J., Puglia, D., Torre, L., Kenny, J. M., Arbelaiz, A., Cantero, G., Marieta, C., Llano-Ponte, R. and Mondragon, I, A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites, Polym. Compos., 25(5), 470–479 (2004).
https://doi.org/10.1002/PC.20040
Devireddy, S. B. R. and Biswas, S., Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy-based composites, Polym. Compos., 38(7), 1396–1403 (2017).
https://doi.org/10.1002/PC.23706
Jankauskiene, Z., Butkute, B., Gruzdeviene, E., Cesevičiene, J. and Fernando, A. L. Chemical composition and physical properties of dew- and water-retted hemp fibers, Ind. Crops. Prod., 75, 206–211 (2015).
https://doi.org/10.1016/J.INDCROP.2015.06.044
Kabir, M. M., Wang, H., Lau, K. T. and Cardona, F., Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview, Compos. B. Eng., 43(7), 2883–2892 (2012).
https://doi.org/10.1016/J.COMPOSITESB.2012.04.053
Kestur G., S., Flores-Sahagun, T. H. S., Dos Santos, L. P., Dos Santos, J., Mazzaro, I. and Mikowski, A., Characterization of blue agave bagasse fibers of Mexico, Compos. - A: Appl. Sci. Manuf., 45, 153–161 (2013).
https://doi.org/10.1016/J.COMPOSITESA.2012.09.001
Li, X., Tabil, L. G. and Panigrahi, S., Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ., 15(1), 25–33 (2007).
https://doi.org/10.1007/S10924-006-0042-3/METRICS
Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z. and Zhou, Z., Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites, Compos. B Eng., 51, 28–34 (2013).
https://doi.org/10.1016/J.COMPOSITESB.2013.02.031
Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K. and Tripathy, S. S., Studies on mechanical performance of biofiber/glass reinforced polyester hybrid composites, Compos. Sci. Technol., 63(10), 1377–1385 (2003).
https://doi.org/10.1016/S0266-3538(03)00084-8
Mishra, V. and Biswas, S., Physical and Mechanical Properties of Bi-directional Jute Fiber Epoxy Composites, Proce. Engg., 51, 561–566 (2013).
https://doi.org/10.1016/J.PROENG.2013.01.079
Morvan, C., Jauneau, A., Flaman, A., Millet, J. and Demarty, M., Degradation of flax polysaccharides with purified endo-polygalacturonase, Carb. Polym., 13(2), 149–163 (1990).
https://doi.org/10.1016/0144-8617(90)90081-3
Mwaikambo, L. Y. and Ansell, M. P., Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, J. Appl. Polym. Sci., 84(12), 2222–2234 (2002).
https://doi.org/10.1002/APP.10460
Mylsamy, K. and Rajendran, I., The mechanical properties, deformation, and thermomechanical properties of alkali-treated and untreated Agave continuous fiber reinforced epoxy composites, Mater. Des., 32(5), 3076–3084 (2011).
https://doi.org/10.1016/J.MATDES.2010.12.051
Narayana, V. L., Rao, L. B. and Devireddy, S. B. R., Effect of fiber percentage and stacking sequence on mechanical performance of unidirectional hemp and palmyra reinforced hybrid composites, Rev. Compos. Mater. Av., 30(3–4), 153–160 (2020).
https://doi.org/10.18280/RCMA.303-405
Pickering, K. L., Efendy, M. G. A. and Le, T. M., A review of recent developments in natural fiber composites and their mechanical performance, Compos. - A: Appl. Sci. Manuf., 83, 98–112 (2016).
https://doi.org/10.1016/J.COMPOSITESA.2015.08.038
Rajeshkumar, G., Seshadri, S. A., Ramakrishnan, S., Sanjay, M. R., Siengchin, S. and Nagaraja, K. C., A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies, Polym. Compos., 42(8), 3687–3701 (2021).
https://doi.org/10.1002/PC.26110
Ratna Prasad, A. V. and Mohana Rao, K., Mechanical properties of natural fiber reinforced polyester composites: Jowar, sisal and bamboo, Mater. Des., 32(8–9), 4658–4663 (2011).
https://doi.org/10.1016/J.MATDES.2011.03.015
Saha, P., Manna, S., Chowdhury, S. R., Sen, R., Roy, D. and Adhikari, B., Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment, Bioresour. Technol., 101(9), 3182–3187 (2010).
https://doi.org/10.1016/J.BIORTECH.2009.12.010
Sankara, N., K., Suman, K. N. S. and Ravindra, A., Experimental Investigation on Mechanical Characterization of Nanoclay-Reinforced Banana Fiber/E-Glass/Epoxy Resin Hybrid Nanocomposite, Lecture Notes on Multidisciplinary Industrial Engineering, Springer, 609–625 (2019).
https://doi.org/10.1007/978-981-13-7643-6_50
Sapuan, S. M., Leenie, A., Harimi, M. and Beng, Y. K., Mechanical properties of woven banana fiber reinforced epoxy composites, Mater. Des., 27(8), 689–693 (2006).
https://doi.org/10.1016/J.MATDES.2004.12.016
Sathishkumar, T. P., Navaneethakrishnan, P. and Shankar, S., Tensile and flexural properties of snake grass natural fiber reinforced isophthalic polyester composites, Compos. Sci. Technol., 72(10), 1183–1190 (2012).
https://doi.org/10.1016/J.COMPSCITECH.2012.04.001
Sawpan, M. A., Pickering, K. L. and Fernyhough, A., Improvement of mechanical performance of industrial hemp fiber reinforced polylactide bio composites, Compos. - A: Appl. Sci. Manuf., 42(3), 310–319 (2011).
https://doi.org/10.1016/J.COMPOSITESA.2010.12.004
Symington, M. C., Banks, W. M., West, O. D. and Pethrick, R. A., Tensile Testing of Cellulose Based Natural Fibers for Structural Composite Applications, J. Compos. Mater., 43(9), 1083–1108 (2009).
https://doi.org/10.1177/0021998308097740
Thygesen, A., Thomsen, A. B., Daniel, G. and Lilholt, H., Comparison of composites made from fungal defibrated hemp with composites of traditional hemp yarn, Ind. Crop. Prod., 25(2), 147–159 (2007).
https://doi.org/10.1016/J.INDCROP.2006.08.002
Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R. and Herrera-Franco, P. J., Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites, Compos. B Eng., 30(3), 309–320 (1999).
https://doi.org/10.1016/S1359-8368(98)00054-7
Yan, L., Chouw, N., Huang, L. and Kasal, B., Effect of alkali treatment on microstructure and mechanical properties of coir fibers, coir fiber reinforced-polymer composites, and reinforced-cementitious composites, Constr. Build. Mater., 112, 168–182 (2016).