Open Access

Effect of Burkholderia sp. on Root Nodulation in Black Gram Grown in Cadmium-Contaminated Soil Supplemented with Lignite Humic Acid and Seaweed Biochar

R. Shanmugasundaram, shasumerlin@gmail.com
Centre for Applied Research and Development (CARD) NLC INDIA Limited, Neyveli, TN, India
CAS in Marine Biology, Annamalai University, Parangipettai, TN, India
S. T. Somasundaram CAS in Marine Biology, Annamalai University, Parangipettai, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 130-148

https://doi.org/10.13074/jent.2024.12.2441046

PDF


Abstract

A non-rhizobial, root-nodulating endophytic bacterium, Burkholderia multivorans strain Strulens, was isolated from black gram root nodules. Under cadmium (Cd) stress, this bacterium synthesized indole-3-acetic acid (IAA), produced exopolysaccharides, and solubilized phosphate. When black gram plants were treated with biochar (2% w/w), humic acid (2% w/w), and Burkholderia sp., they exhibited increased nodule formation and higher leghemoglobin content, even at varying Cd concentrations. Combining humic acid and biochar with Burkholderia sp.  also reduced Cd translocation from the roots to the shoots, resulting in a translocation factor of 0.17. These findings suggest that incorporating biochar and humic acid into Cd-affected soils, along with Burkholderia sp.  inoculation, can improve legume growth and reduce Cd uptake in contaminated soils.

Full Text

Reference


Afzal, A., Bahader, S., Ul Hassan, T., Naz, I. and Din, A., Rock Phosphate Solubilization by Plant Growth-Promoting Bacillus velezensis and Its Impact on Wheat Growth and Yield, Geomicrobiol. J., 40(2), 131–142 (2023).

https://doi.org/10.1080/01490451.2022.2128113

Afzal, I., Shinwari, Z. K., Sikandar, S. and Shahzad, S., Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants, Microbiol. Res., 221, 36–49 (2019).

https://doi.org/10.1016/j.micres.2019.02.001

Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G. and Tran, L.S. P., Alleviation of Cadmium Toxicity in Brassica juncea L. (Czern. & Coss.) by Calcium Application Involves Various Physiological and Biochemical Strategies, PLoS One, 10(1), e0114571 (2015).

https://doi.org/10.1371/journal.pone.0114571

AL-Nussairawi, M., Risa, A., Garai, E., Varga, E., Szabó, I., Csenki-Bakos, Z., Kriszt, B. and Cserháti, M., Mycotoxin Biodegradation Ability of the Cupriavidus Genus, Curr. Microbiol., 77(9), 2430–2440 (2020).

https://doi.org/10.1007/s00284-020-02063-7

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. and Wang, M.-Q., Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications, Toxics, 9(3), 42 (2021).

https://doi.org/10.3390/toxics9030042

Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I. and Garbisu, C., Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic, Rev. Environ. Sci. Bio/Technology, 3(1), 71–90 (2004).

https://doi.org/10.1023/B:RESB.0000040059.70899.3d

Angon, P. B., Islam, M. S., KC, S., Das, A., Anjum, N., Poudel, A. and Suchi, S. A., Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain, Heliyon, 10(7), e28357 (2024).

https://doi.org/10.1016/j.heliyon.2024.e28357

Balasubramaniyam, A. and Harvey, P. J., Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand, Environ. Sci. Pollut. Res., 21(22), 12651–12661 (2014).

https://doi.org/10.1007/s11356-014-3138-7

Bhagat, N., Raghav, M., Dubey, S. and Bedi, N., Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance, J. Microbiol. Biotechnol., 31(8), 1045–1059 (2021).

https://doi.org/10.4014/jmb.2105.05009

Borah, D., Nainamalai, S., Gopalakrishnan, S., Rout, J., Alharbi, N. S., Alharbi, S. A. and Nooruddin, T., Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica, Appl. Microbiol. Biotechnol., 102(8), 3635–3647 (2018).

https://doi.org/10.1007/s00253-018-8892-x

Bravo, D. and Braissant, O., Cadmium‐tolerant bacteria: current trends and applications in agriculture, Lett. Appl. Microbiol., 74(3), 311–333 (2022).

https://doi.org/10.1111/lam.13594

Briffa, J., Sinagra, E. and Blundell, R., Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6(9), e04691 (2020).

https://doi.org/10.1016/j.heliyon.2020.e04691

Carezzano, M. E., Paletti Rovey, M.F., Cappellari,L.d.R., Gallarato, L.A., Bogino, P., Oliva, M.d.l.M. and Giordano,W., Biofilm-Forming Ability of Phytopathogenic Bacteria: A Review of its Involvement in Plant Stress. Plants, 12, 2207 (2023).

https://doi.org/10.3390/plants12112207

Chen, X., Topology optimization of microfluidics — A review, Microchem. J., 127, 52–61 (2016).

https://doi.org/10.1016/j.microc.2016.02.005

Chlebek, D., Płociniczak, T., Gobetti, S., Kumor, A., Hupert-Kocurek, K. and Pacwa-Płociniczak, M., Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits, Int. J. Mol. Sci., 23(1), 214 (2021).

https://doi.org/10.3390/ijms23010214

Cobbett, C. S., Phytochelatin biosynthesis and function in heavy-metal detoxification, Curr. Opin. Plant Biol., 3(3), 211–216 (2000).

https://doi.org/10.1016/S1369-5266(00)80067-9

Cui, Z.-G., Ahmed, K., Zaidi, S. F. and Muhammad, J. S., Ins and outs of cadmium-induced carcinogenesis: Mechanism and prevention, Cancer Treat. Res. Commun., 27, 100372 (2021).

https://doi.org/10.1016/j.ctarc.2021.100372

Cuypers, A., Vanbuel, I., Iven, V., Kunnen, K., Vandionant, S., Huybrechts, M., Hendrix, S., Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level, Free Radic. Biol. Med., 199, 81–96 (2023).

https://doi.org/10.1016/j.freeradbiomed.2023.02.010

Das, K., Katiyar, V. and Goel, R., ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature, Microbiol. Res., 158(4), 359–362 (2003).

https://doi.org/10.1078/0944-5013-00217

Das, S. C. and Al-Naemi, H. A., Cadmium Toxicity: Oxidative Stress, Inflammation and Tissue Injury, Occup. Dis. Environ. Med., 07(04), 144–163 (2019).

https://doi.org/10.4236/odem.2019.74012

Deng, A., Wu, X., Su, C., Zhao, M., Wu, B. and Luo, J., Enhancement of soil microstructural stability and alleviation of aluminium toxicity in acidic latosols via alkaline humic acid fertiliser amendment, Chem. Geol., 583, 120473 (2021).

https://doi.org/10.1016/j.chemgeo.2021.120473

dos Santos, I. B., Pereira, A. P. de A., de Souza, A. J., Cardoso, E. J. B. N., da Silva, F. G., Oliveira, J. T. C., Verdi, M. C. Q. and Sobral, J. K., Selection and Characterization of Burkholderia spp. for Their Plant-Growth Promoting Effects and Influence on Maize Seed Germination, Front Soil Sci., 1, (2021).

https://doi.org/10.3389/fsoil.2021.805094

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 28(3), 350–356 (1956).

https://doi.org/10.1021/ac60111a017

El Bamiki, R., Raji, O., Ouabid, M., Elghali, A., Khadiri Yazami, O. and Bodinier, J.L., Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco, Minerals, 11(10), 1137 (2021).

https://doi.org/10.3390/min11101137

Feria-Cáceres, P. F., Penagos-Velez, L. and Moreno-Herrera, C. X., Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content, Microbiol. Res. (Pavia)., 13(3), 556–573 (2022).

https://doi.org/10.3390/microbiolres13030039

Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N. and Bravo, D., Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia, Int. J. Environ. Sci. Technol., 19(4), 2455–2476 (2022).

https://doi.org/10.1007/s13762-021-03299-x

Gogoi, L., Narzari, R., Chutia, R. S., Borkotoki, B., Gogoi, N. and Kataki, R., Remediation of heavy metal contaminated soil: Role of biochar, Adv. Chem. Poll. Environ. Manage. Pro., 7, 39–63, (2021).

https://doi.org/10.1016/bs.apmp.2021.08.002

Gordon, S. A. and Weber, R. P., Colorimetric Estimation Of Indoleacetic Acid, Plant Physiol., 26(1), 192–195 (1951).

https://doi.org/10.1104/pp.26.1.192

Goud, M. S., Sharma, S. K., Kharbikar, L. L., Prasanna, R., Sangwan, S., Dahuja, A. and Dixit, A., Bacillus species consortium with tryptophan-dependent and -independent pathways mediated production of IAA and its derivatives modulates soil biological properties, growth and yield of wheat, Plant Soil., (2024).

https://doi.org/10.1007/s11104-024-06782-9

Gupta, P. and Diwan, B., Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies, Biotechnol. Reports., 13, 58–71 (2017).

https://doi.org/10.1016/j.btre.2016.12.006

Huang, X., Duan, S., Wu, Q., Yu, M. and Shabala, S., Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight, Plants, 9(2), 223 (2020).

https://doi.org/10.3390/plants9020223

Janaki, M., Kirupanantha-Rajan, P., Senthil-Nathan, S., Stanley-Raja, V., Al Farraj, D. A., Aljeidi, R. A. and Arokiyaraj, S., Beneficial role of Burkholderia cepacia in heavy metal bioremediation in metal-polluted soils and enhance the tomato plant growth, Biocatal. Agric. Biotechnol., 57, 103032 (2024).

https://doi.org/10.1016/j.bcab.2024.103032

Jiang, M., Jiang, J., Li, S., Li, M., Tan, Y., Song, S., Shu, Q. and Huang, J., Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation, J. Hazard. Mater., 384, 121319 (2020).

https://doi.org/10.1016/j.jhazmat.2019.121319

Jin, Y., Yuan, Y., Liu, Z., Gai, S., Cheng, K. and Yang, F., Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives, J. Environ. Manage., 351, 119738 (2024).

https://doi.org/10.1016/j.jenvman.2023.119738

Jing, H., Yang, W., Chen, Y., Yang, L., Zhou, H., Yang, Y., Zhao, Z., Wu, P. and Zia-ur-Rehman, M., Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety, Sci. Total Environ., 897, 165369 (2023).

https://doi.org/10.1016/j.scitotenv.2023.165369

Kalayu, G., Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers, Int. J. Agron., 2019, 1–7 (2019).

https://doi.org/10.1155/2019/4917256

Kandel, S., Joubert, P. and Doty, S., Bacterial Endophyte Colonization and Distribution within Plants, Microorganisms, 5(4), 77 (2017).

https://doi.org/10.3390/microorganisms5040077

Ketaubon, P., Ritthikasem, N., Tanheng, P. and Prapagdee, B., Enhancing heavy metal phytoremediation in landfill soil by Chrysopogon zizanioides (L.) roberty through the application of bacterial-biochar pellets, Environ. Technol. Innov., 35, 103738 (2024).

https://doi.org/10.1016/j.eti.2024.103738

Khiangte, L. and Lalfakzuala, R., Effects of Heavy Metals on Phosphatase Enzyme Activity and Indole-3-Acetic Acid (IAA) Production of Phosphate Solubilizing Bacteria, Geomicrobiol. J., 38(6), 494–503 (2021).

https://doi.org/10.1080/01490451.2021.1894271

Khourchi, S., Elhaissoufi, W., Loum, M., Ibnyasser, A., Haddine, M., Ghani, R., Barakat, A., Zeroual, Y., Rchiad, Z., Delaplace, P. and Bargaz, A., Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat, Microbiol. Res., 262, 127094 (2022).

https://doi.org/10.1016/j.micres.2022.127094

Klonowska, A., Melkonian, R., Miché, L., Tisseyre, P. and Moulin, L., Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic ev, BMC Genomics, 19(1), 105 (2018).

https://doi.org/10.1186/s12864-018-4487-2

Klučáková, M. and Pavlíková, M., Lignitic Humic Acids as Environmentally-Friendly Adsorbent for Heavy Metals, J. Chem., 2017, 1–5 (2017).

https://doi.org/10.1155/2017/7169019

Lasota, J., Błońska, E., Łyszczarz, S. and Tibbett, M., Forest Humus Type Governs Heavy Metal Accumulation in Specific Organic Matter Fractions, Water, Air, Soil Pollut., 231(2), 80 (2020).

https://doi.org/10.1007/s11270-020-4450-0

Li, B., Chen, W., Zhao, M., Li, C., Gao, B., Deng, M., Wu, Q., Gu, Q., Zhang, Y., Wei, X., Zhang, J. and Ye, Q., Identification and evaluation of new specific targets based pan-genome analysis for rapid detection of Burkholderia gladioli pathovar cocovenenans and Burkholderia gladioli in foods, Food Control, 158, 110233 (2024).

https://doi.org/10.1016/j.foodcont.2023.110233

Li, S., Huang, X., Li, G., Zhang, K., Bai, L., He, H., Chen, S. and Dai, J., Effects of Mineral-Based Potassium Humate on Cadmium Accumulation in Rice (Oryza sativa L.) under Three Levels of Cadmium-Contaminated Alkaline Soils, Sustainability, 15(3), 2836 (2023).

https://doi.org/10.3390/su15032836

Li, W.-L., Wang, J.-F., Lv, Y., Dong, H.-J., Wang, L.-L., He, T. and Li, Q.-S., Improving cadmium mobilization by phosphate-solubilizing bacteria via regulating organic acids metabolism with potassium, Chemosphere, 244, 125475 (2020).

https://doi.org/10.1016/j.chemosphere.2019.125475

Li, Y.-K., Yang, T., Chen, M.-L. and Wang, J.-H., Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals, Crit. Rev. Anal. Chem., 51(4), 353–372 (2021).

https://doi.org/10.1080/10408347.2020.1736505

Liu, J. Y., Li, A. H., Zhang, J. C., Wang, Y. Q. and Feng, Z. H., Performance of High-Speed Steel Drills in Wet Drilling Inconel 718 Superalloy, Exp. Tech., 47(2), 395–406 (2023).

https://doi.org/10.1007/s40799-022-00560-x

Lobo, L. L. B., da Silva, M. S. R. de A., Carvalho, R. F. and Rigobelo, E. C., The Negative Effect of Coinoculation of Plant Growth-Promoting Bacteria Is Not Related to Indole-3-Acetic Acid Synthesis, J. Plant Growth Regul., 42(4), 2317–2326 (2023).

https://doi.org/10.1007/s00344-022-10706-1

Manikandan, S. K., Pallavi, P., Shetty, K., Bhattacharjee, D., Giannakoudakis, D. A., Katsoyiannis, I. A. and Nair, V., Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides, Molecules, 28(2), 719 (2023).

https://doi.org/10.3390/molecules28020719

Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., Wijaya, L., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A. and Ahmad, P., Biochar as a tool for effective management of drought and heavy metal toxicity, Chemosphere, 271, 129458 (2021).

https://doi.org/10.1016/j.chemosphere.2020.129458

Maqsood, A., Shahid, M., Hussain, S., Mahmood, F., Azeem, F., Tahir, M., Ahmed, T., Noman, M., Manzoor, I. and Basit, F., Root colonizing Burkholderia sp. AQ12 enhanced rice growth and upregulated tillering-responsive genes in rice, Appl. Soil Ecol., 157, 103769 (2021).

https://doi.org/10.1016/j.apsoil.2020.103769

Meng, D., Li, J., Liu, T., Liu, Y., Yan, M., Hu, J., Li, X., Liu, X., Liang, Y., Liu, H. and Yin, H., Effects of redox potential on soil cadmium solubility: Insight into microbial community, J. Environ. Sci., 75, 224–232 (2019).

https://doi.org/10.1016/j.jes.2018.03.032

Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y. S. and Wang, H., Humic substances as a washing agent for Cd-contaminated soils, Chemosphere, 181, 461–467 (2017).

https://doi.org/10.1016/j.chemosphere.2017.04.127

Meng, Z., Huang, S., Zhao, Q. and Xin, L., Respective evolution of soil and biochar on competitive adsorption mechanisms for Cd(II), Ni(II), and Cu(II) after 2-year natural ageing, J. Hazard. Mater., 469, 133938 (2024).

https://doi.org/10.1016/j.jhazmat.2024.133938

Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A. and Simal-Gandara, J., Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud Univ. - Sci., 34(3), 101865 (2022).

https://doi.org/10.1016/j.jksus.2022.101865

Muresu, R., Porceddu, A., Concheri, G., Stevanato, P. and Squartini, A., Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination, Plants, 11(11), 1521 (2022).

https://doi.org/10.3390/plants11111521

Nazli, F., Wang, X., Ahmad, M., Hussain, A., Bushra., Dar, A., Nasim, M., Jamil, M., Panpluem, N. and Mustafa, A., Efficacy of Indole Acetic Acid and Exopolysaccharides-Producing Bacillus Safensis Strain FN13 for Inducing Cd-Stress Tolerance and Plant Growth Promotion in Brassica Juncea (L.). Appl. Sci., 11, 4160 (2021).

https://doi.org/10.3390/app11094160

Naveed, M., Mustafa, A., Majeed, S., Naseem, Z., Saeed, Q., Khan, A., Nawaz, A., Baig, K. S. and Chen, J.-T., Enhancing Cadmium Tolerance and Pea Plant Health through Enterobacter sp. MN17 Inoculation Together with Biochar and Gravel Sand, Plants, 9(4), 530 (2020).

https://doi.org/10.3390/plants9040530

Ng, J. F., Ahmed, O. H., Jalloh, M. B., Omar, L., Kwan, Y. M., Musah, A. A. and Poong, K. H., Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate, Agronomy, 12(1), 219 (2022).

https://doi.org/10.3390/agronomy12010219

Noor, W., Majeed, G., Lone, R., Tyub, S., Kamili, A. N. and Azeez, A., Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Wheat, In: Plant Phenolics in Abiotic Stress Management, Springer, Singapore, 287–320 (2023).

https://doi.org/10.1007/978-981-19-6426-8_14

Oliva, M., Camas, D. E., Valqui, X. J., Meléndez, J. B. and Leiva, S., Quantitative Determination of Cadmium (Cd) in Soil-Plant System in Potato Cropping ( Solanum tuberosum var. Huayro), Adv. Agric., 2019, 1–4 (2019).

https://doi.org/10.1155/2019/9862543

Pal, G., Saxena, S., Kumar, K., Verma, A., Sahu, P. K., Pandey, A., White, J. F. and Verma, S. K., Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance, Microbiol. Res., 265, 127201 (2022).

https://doi.org/10.1016/j.micres.2022.127201

Piccolo, A., Spaccini, R., De Martino, A., Scognamiglio, F. and Di Meo, V., Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition, Chemosphere, 225, 150–156 (2019).

https://doi.org/10.1016/j.chemosphere.2019.03.019

Proshad, R., Li, J., Sun, G., Zheng, X., Yue, H., Chen, G., Zhang, S., Li, Z. and Zhao, Z., Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil, Environ. Sci. Pollut. Res., 31(9), 13155–13174 (2024).

https://doi.org/10.1007/s11356-024-32015-8

Pukalchik, M., Kydralieva, K., Yakimenko, O., Fedoseeva, E. and Terekhova, V., Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil—A Review, Front. Environ. Sci., 7, (2019).

https://doi.org/10.3389/fenvs.2019.00080

Qu, C., Chen, J., Mortimer, M., Wu, Y., Cai, P. and Huang, Q., Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides, J. Hazard. Mater., 430, 128365 (2022).

https://doi.org/10.1016/j.jhazmat.2022.128365

Ramakrishna, W., Yadav, R. and Li, K., Plant growth promoting bacteria in agriculture: Two sides of a coin, Appl. Soil Ecol., 138, 10–18 (2019).

https://doi.org/10.1016/j.apsoil.2019.02.019

Rana, K. L., Kour, D., Kaur, T., Devi, R., Yadav, A. N., Yadav, N., Dhaliwal, H. S. and Saxena, A. K., Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability, Antonie Van Leeuwenhoek, 113(8), 1075–1107 (2020).

https://doi.org/10.1007/s10482-020-01429-y

Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A. and Beck, L., Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health, Agronomy, 13(6), 1521 (2023).

https://doi.org/10.3390/agronomy13061521

Rezapour, S., Atashpaz, B., Moghaddam, S. S., Kalavrouziotis, I. K. and Damalas, C. A., Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system, Chemosphere, 231, 579–587 (2019).

https://doi.org/10.1016/j.chemosphere.2019.05.095

Rong, Q., Zhong, K., Huang, H., Li, C., Zhang, C. and Nong, X., Humic Acid Reduces the Available Cadmium, Copper, Lead, and Zinc in Soil and Their Uptake by Tobacco, Appl. Sci., 10(3), 1077 (2020).

https://doi.org/10.3390/app10031077

Rutten, P. J., Steel, H., Hood, G. A., Ramachandran, V. K., McMurtry, L., Geddes, B., Papachristodoulou, A. and Poole, P. S., Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis, PLOS Genet., 17(2), e1009099 (2021).

https://doi.org/10.1371/journal.pgen.1009099

Saitou, N., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4(4), 406–425 (1987).

https://doi.org/10.1093/oxfordjournals.molbev.a040454

Saowapar Khianngam, Pimjai Meetum, Pantipa Na Chiangmai and Somboon Tanasupawat, Identification and Optimization of Indole-3-Acetic Acid Production of Endophytic Bacteria and Their Effects on Plant Growth, Trop. Life. Sci. Res., 34(1), 219–239 (2023).

https://doi.org/10.21315/tlsr2023.34.1.12

Schiffmann, J. and Lobel, R., Seasonal changes in symbiotic nitrogen fixation and haemoglobin content in nodules of peanuts, Plant Soil, 39(2), 329–340 (1973).

https://doi.org/10.1007/BF00014800

Seneviratne, M., Gunaratne, S., Bandara, T., Weerasundara, L., Rajakaruna, N., Seneviratne, G. and Vithanage, M., Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress, S Afr J Bot., 105,19-24 (2016), https://doi.org/10.1016/j.sajb.2016.02.206

Shahbaz, A. K., Lewińska, K., Iqbal, J., Ali, Q., Mahmood-ur-Rahman, Iqbal, M., Abbas, F., Tauqeer, H. M. and Ramzani, P. M. A., Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios, J. Environ. Manage., 218, 256–270 (2018).

https://doi.org/10.1016/j.jenvman.2018.04.046

Somasegaran, P. and Hoben, H. J., Collecting Nodules and Isolating Rhizobia, In: Handbook for Rhizobia, Springer, New York, New York, NY, 7–23 (1994).

https://doi.org/10.1007/978-1-4613-8375-8_1

Sun, L., Cheng, L., Ma, Y., Lei, P., Wang, R., Gu, Y., Li, S., Zhang, F. and Xu, H., Exopolysaccharides from Pantoea alhagi NX-11 specifically improve its root colonization and rice salt resistance, Int. J. Biol. Macromol., 209, 396–404 (2022).

https://doi.org/10.1016/j.ijbiomac.2022.04.015

Swarnalakshmi, K., Yadav, V., Tyagi, D., Dhar, D. W., Kannepalli, A. and Kumar, S., Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production, Plants, 9(11), 1596 (2020).

https://doi.org/10.3390/plants9111596

Taeprayoon, P., Homyog, K. and Meeinkuirt, W., Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops, Sci. Rep., 12(1), 13070 (2022).

https://doi.org/10.1038/s41598-022-17385-8

Teng, Z., Shao, W., Zhang, K., Huo, Y. and Li, M., Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization, J. Environ. Manage., 231, 189–197 (2019).

https://doi.org/10.1016/j.jenvman.2018.10.012

Thomas, M. and Benov, L., The Contribution of Superoxide Radical to Cadmium Toxicity in E. coli. Biol. Trace Elem. Res., 181,361–368 (2018).

https://doi.org/10.1007/s12011-017-1048-517

Tsyganov, V. E., Tsyganova, A. V., Gorshkov, A. P., Seliverstova, E. V., Kim, V. E., Chizhevskaya, E. P., Belimov, A. A., Serova, T. A., Ivanova, K. A., Kulaeva, O. A., Kusakin, P. G., Kitaeva, A. B. and Tikhonovich, I. A., Efficacy of a Plant-Microbe System: Pisum sativum (L.) Cadmium-Tolerant Mutant and Rhizobium leguminosarum Strains, Expressing Pea Metallothionein Genes PsMT1 and PsMT2, for Cadmium Phytoremediation, Front. Microbiol., 11 (2020).

https://doi.org/10.3389/fmicb.2020.00015

Vazquez, A., Zawoznik, M., Benavides, M. P. and Groppa, M. D., Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress, Plant Sci., 312, 111056 (2021).

https://doi.org/10.1016/j.plantsci.2021.111056

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A., Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review, Molecules, 21(5), 573 (2016).

https://doi.org/10.3390/molecules21050573

Wang, C., Huang, Y., Yang, X., Xue, W., Zhang, X., Zhang, Y., Pang, J., Liu, Y. and Liu, Z., Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium, Chemosphere, 252, 126603 (2020).

https://doi.org/10.1016/j.chemosphere.2020.126603

Wang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zou, J. F., Shen, Z., Lian, C. and Chen, Y., Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review, Ecotoxicol. Environ. Saf., 207, 111261 (2021).

https://doi.org/10.1016/j.ecoenv.2020.111261

Wang, W., Sun, X., Huang, W., Men, X., Yi, S., Zheng, F., Zhang, Z. and Wang, Z., Soil P solubilization and plant growth promotion by a saline–alkali-tolerant P-solubilizing bacterium, Bacillus sp. DYS211, J. Plant Ecol.,16(6), 1-13 (2023).

https://doi.org/10.1093/jpe/rtad028

Wheatley, R. M., Ford, B. L., Li, L., Aroney, S. T. N., Knights, H. E., Ledermann, R., East, A. K., Ramachandran, V. K. and Poole, P. S., Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis, Proc. Natl. Acad. Sci., 117(38), 23823–23834 (2020).

https://doi.org/10.1073/pnas.2009094117

Xu, D., Ni, X., Kang, J., He, B., Zuo, Y., Mosa, A. A. and Yin, X., Mechanisms of cadmium adsorption by ramie nano-biochar with different aged treatments, Appl. Soil Ecol., 193, 105175 (2024).

https://doi.org/10.1016/j.apsoil.2023.105175

Yildirim, E., Ekinci, M., Turan, M., Ağar, G., Dursun, A., Kul, R., Alim, Z. and Argin, S., Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress, Sci. Rep., 11(1), 8040 (2021).

https://doi.org/10.1038/s41598-021-86991-9

Zang, Y., Wang, M., Shohag, M. J. I., Lu, L., He, T., Liao, C., Zhang, Z., Chen, J., You, X., Zhao, Y., Wei, Y. and Tian, S., Biochar performance for preventing cadmium and arsenic accumulation, and the health risks associated with mustard (Brassica juncea) grown in co-contaminated soils, Ecotoxicol. Environ. Saf., 263, 115216 (2023).

https://doi.org/10.1016/j.ecoenv.2023.115216

Zeng, W., Li, F., Wu, C., Yu, R., Wu, X., Shen, L., Liu, Y., Qiu, G. and Li, J., Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals, Bioprocess Biosyst. Eng., 43(1), 153–167 (2020).

https://doi.org/10.1007/s00449-019-02213-7

Zhang, M., Xia, H., Riaz, M., Liu, B., Zeinab-El-Desouki and Jiang, C., Various beneficial microorganisms colonizing on the surface of biochar primarily originated from the storage environment rather than soil environment, Appl. Soil Ecol., 182, 104700 (2023).

https://doi.org/10.1016/j.apsoil.2022.104700

Zhang, S., Wang, L., Chen, S., Fan, B., Huang, S. and Chen, Q., Enhanced phosphorus mobility in a calcareous soil with organic amendments additions: Insights from a long term study with equal phosphorus input, J. Environ. Manage., 306, 114451 (2022).

https://doi.org/10.1016/j.jenvman.2022.114451

Zhang, Y., Yang, B., Peng, S., Zhang, Z., Cai, S., Yu, J., Wang, D. and Zhang, W., Mechanistic insights into chemical conditioning on transformation of dissolved organic matter and plant biostimulants production during sludge aerobic composting, Water Res., 255, 121446 (2024).

https://doi.org/10.1016/j.watres.2024.121446

Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M., Ahmad, M., Ali, N. and Maqsood, M. F., Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies, J. Soil Sci. Plant Nutr., 22(1), 212–269 (2022).

https://doi.org/10.1007/s42729-021-00645-3

Contact Us

Powered by

Powered by OJS