A Comparative Analysis of the Fuel Characteristics of Bioenergy Sources to Meet Sustainability and Environmental Goals
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 122-129
Abstract
Biodiesel recognized as a sustainable alternative to petroleum diesel, has garnered significant attention due to its potential to reduce reliance on fossil fuels and mitigate environmental problems. Produced from vegetable oils, animal fats, or waste oils, biodiesel shares similar combustion properties with conventional diesel fuel but also possesses distinct physicochemical characteristics. This study specifically examines the fundamental properties of rapeseed biodiesel blends, ranging from B10 (10% biodiesel, 90% base diesel) to B100 (100% biodiesel). Key parameters such as calorific value, viscosity, density, flash point, cloud point, and freeze point were meticulously measured and analyzed in comparison to standard diesel fuel. The calorific value indicates the energy content, while viscosity and density affect fuel injection and combustion. The flash point provides safety information regarding fuel storage and handling, and the cloud and freeze points are critical for understanding the performance in cold climates. This comprehensive evaluation aims to highlight the feasibility and performance characteristics of rapeseed biodiesel as a viable substitute for conventional diesel, contributing to the ongoing search for cleaner and more sustainable energy sources.
Full Text
Reference
Angulo-Cuentas, G. Cadena-Wilches, L. and Nuñez-Mejia, E., The Inventive Activity in Biodiesel Production, Rec. Pat. on Eng., 13(3), 224–231 (2019).
https://doi.org/10.2174/1872212112666181119120953
Athar, M. and Zaidi, S., A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production, J. Environ. Chem. Eng., 8(6), 104523 (2020).
https://doi.org/10.1016/j.jece.2020.104523
Babazadeh, R. Ezati, F. and Arumugam, A., Chapter 3 - Non-edible feedstock: necessity and societal implications, In: Arumugam ABT-P of B from N-ES (ed), Elsevier, 81–116 (2022).
https://doi.org/10.1016/B978-0-12-824295-7.00002-4
Bharathiraja, B., Selvakumari, I. A. E. Jayamuthunagai, J., Saravanaraj, A. and Arumugam, A., Chapter 5 - Biodiesel production: key factors affecting the efficiency of the process, In: Arumugam ABT-P of B from N-ES (ed), Elsevier, 153–178 (2022).
https://doi.org/10.1016/B978-0-12-824295-7.00006-1
Choedkiatsakul, I. Ngaosuwan, K. Kiatkittipong, W. Laosiripojana, N. and Assabumrungrat, S., Patent Review on Biodiesel Production Process, Rec. Pat. on Chem. Eng., 4(3), 265–279 (2011).
https://doi.org/10.2174/2211334711104030265
Deshmukh, S. Bala, K. and Kumar, R., Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production, Environ. Sci. and Pol. Res., 26(24), 24462–24473 (2019).
https://doi.org/10.1007/s11356-019-05692-z
Etim, A. O. Jisieike, C. F. Ibrahim, T. H. and Betiku, E., Chapter 2 - Biodiesel and its properties, In: Arumugam ABT-P of B from N-ES, Elsevier, 39–79 (2022).
https://doi.org/10.1016/B978-0-12-824295-7.00004-8
Ganesan, S. Padmanabhan, S. Senthil Kumar, J. Polina, N. and Kumar, S.K., Influence of MgO on Performance and Emissions of di Engine using blends of Castor oil, IOP Conference Series: Mat. Sci. and Eng., (2017).
https://doi.org/10.1088/1757-899X/197/1/012025
Hassan, T. Rahman, Md.M. Rahman, Md.A. and Nabi, M.N., Opportunities and challenges for the application of biodiesel as automotive fuel in the 21st century, Biofuels, Bioprod. Biorefin., 16(5), 1353–1387 (2022).
https://doi.org/10.1002/bbb.2375
Hazrat, M. A. Rasul, M. G. Mofijur, M. Khan, M. M. K., Djavanroodi, F., Azad, A. K., Bhuiya, M. M. K. and Silitonga, A.S., A Mini Review on the Cold Flow Properties of Biodiesel and its Blends, Front Energy Res., 8(2020).
https://doi.org/10.3389/fenrg.2020.598651
Hoekman, S. K. Broch, A. Robbins, C. Ceniceros, E. and Natarajan, M., Review of biodiesel composition, properties, and specifications, Renewable and Sustainable Energy Rev., 16(1), 143–169 (2012).
https://doi.org/10.1016/j.rser.2011.07.143
Jahirul, M. I. Rasul, M. G. Brown, R. J. Senadeera, W. Hosen, M. A. Haque, R. Saha, S. C. and Mahlia, T. M. I., Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN), Renewable Energy, 168 632–646 (2021).
https://doi.org/10.1016/j.renene.2020.12.078
Kalu-Uka, G. M. Kumar, S. Kalu-Uka, A. C. Vikram, S. Okorafor, O. O. Kigozi, M. Ihekweme, G. O. and Onwualu, A. P., Prospects for biodiesel production from Macrotermes nigeriensis: Process optimization and characterization of biodiesel properties, Biomass Bioenergy, 146 105980 (2021).
https://doi.org/10.1016/j.biombioe.2021.105980
Khan, I. U. Chen, H. Yan, Z. and Chen, J., Extraction and Quality Evaluation of Biodiesel from Six Familiar Non-Edible Plants Seeds, Processes, 9(5), 840 (2021).
https://doi.org/10.3390/pr9050840
Mishra, V. K. and Goswami, R., A review of production, properties and advantages of biodiesel, Biofuels, 9(2), 273–289 (2018).
https://doi.org/10.1080/17597269.2017.1336350
Moser, B. R., Biodiesel production, properties, and feedstocks, In Vitro Cell. Dev. Biol. Plant, 45(3), 229–266 (2009).
https://doi.org/10.1007/s11627-009-9204-z
Muhammed Niyas, M. and Shaija, A., Effect of repeated heating of coconut, sunflower, and palm oils on their fatty acid profiles, biodiesel properties and performance, combustion, and emission, characteristics of a diesel engine fueled with their biodiesel blends, Fuel, 328, 125242 (2022).
https://doi.org/10.1016/j.fuel.2022.125242
Öner, C. and Altun, Ş., Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine, Appl. Energy, 86(10), 2114–2120 (2009).
https://doi.org/10.1016/j.apenergy.2009.01.005
Santanumurti, M. B. Royan, M. R. Samara, S. H. Sigit, S. and Alamsjah, M. A., Comparison of the efficiency (flash point, freezing point, and viscosity test) of biodiesels from Sargassum sp., IOP Conf. Ser. Earth Environ. Sci., 236(1), (2019).
https://doi.org/10.1088/1755-1315/236/1/012011
Sarma, K. A. Sarmah, K. J. Barbora, L. Kalita, P. Chatterjee, S. Mahanta, P. and Goswami, P., Recent Inventions in Biodiesel Production and Processing- A Review, Recent Pat. Eng., 2:47–58 (2008).
https://doi.org/10.2174/187221208783478552
Shaah, M. A. Hossain, M. S. Allafi, F. Ab Kadir, M. O. and Ahmad, M. I., Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies, RSC Adv., 12(16), 9845–9861 (2022).
https://doi.org/10.1039/d2ra00571a
Shahid, E. M. and Jamal, Y., Production of biodiesel: A technical review, Renewable Sustainable Energy Rev., 15(9), 4732–4745 (2011).
https://doi.org/10.1016/j.rser.2011.07.079
Sia, C. B. Kansedo, J. Tan, Y. H. and Lee, K. T., Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review, Biocatal. Agric. Biotechnol., 24 101514 (2020). https://doi.org/10.1016/j.bcab.2020.101514
Yasin, M. H. M. Ali, M. A. Mamat, R. Yusop, A. F. and Ali, M. H., Chapter 11 - Physical properties and chemical composition of biofuels, In: Basile A, Dalena FBT-S and TG of F, Elsevier, 291–320 (2019).