Design and Optimization of a Biocompatible Polyethylene Composite with Nelumbo Nucifera Fiber and Nano-banana Peel Filler for Sustainable Environmental Applications
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 306-322
Abstract
The present study examines the formulation of a biocompatible polyethylene composite that integrates Nelumbo nucifera natural fiber (NNNF) and Nano - banana peel waste filler (NBPF) for prospective environmental applications. The composite was made with compression molding and then fine-tuned with the use of ANN (Artificial Neural Network) prediction models and Taguchi-based multi-criteria decision-making tools (CRITIC and EDAS). The hybrid amalgamation of these composite materials has been little investigated in the environmental domain. The FTIR analysis showed that the banana peel waste filler was more compatible with the PE matrix, since there was a peak maximum at 1451 cm-1. This peak indicates asymmetric displacement of the Carbon–Oxygen (C-O) and Carbon–Hydrogen (C-H) functional groups. The NF exhibited homogeneous distribution, enhancing stress transmission and flexural characteristics. There was a statistically significant increase in accuracy using the ANN model (r=0.61523). The ideal configuration was found by multi-response optimization to be a combination of 4% NaOH treatment, 3.5 wt% NBPF, 35 wt% NNNF, and a length of fiber 3 cm. This resulted in a TS of 24.75 MPa, FS of 31.25 MPa, and IS of 21.47 kJ/m². These produced composites were biodegradable and lightweight, which made them appropriate for a range of environmental uses, including biodegradable goods, eco-friendly building materials, and sustainable packaging.
Full Text
Reference
Antham, V. A., Dharmarajan, T. A., Thamba, N. B. and Mangalaraja, R. V., Study on Flexural Properties of Lotus, Eucalyptus Composites Reinforced with Epoxy and E-glass Fibers in Different Orientations, J. Nat. Fibers, 19(8), 3001–3014 (2022).
https://doi.org/10.1080/15440478.2020.1838991
Arunachalam, S.J., Saravanan, R., Sathish, T., Alarfaj, A.A., Giri, J., and Kumar, A., Enhancing mechanical performance of MWCNT filler with jute/kenaf/glass composite: a statistical optimization study using RSM and ANN, Mater. Technol., 39(1), 2381156 (2024).
https://doi.org/10.1080/10667857.2024.2381156
Bhadra, D., Dhar, N. R. and Abdus, S. M., Sensitivity analysis of the integrated AHP-TOPSIS and CRITIC-TOPSIS method for selection of the natural fiber, Mater. Today Proc., 562618–2629 (2022).
https://doi.org/10.1016/j.matpr.2021.09.178
Chaudhari, C. P., Bhole, K. and Gholave, J., Review on Banana Fiber-Reinforced Composites,. In: Dave HK, Nedelcu D (eds.) Advances in Manufacturing Processes, Springer Singapore, 359–379 (2021).
https://doi.org/10.1007/978-981-15-9117-4_27
Elango, A. H., Kumar, K. V., Loganathan, T. G., Priya, R. K., Shobana, S., Balasubramanian, M. and Dharmaraja, J., Characterization of alkali treated Nelumbo nucifera fiber and properties of its reinforced composite, J. Nat. Fibers, 19(13), 4949–4963 (2022).
https://doi.org/10.1080/15440478.2020.1870640
Ibrahim, R. B., Tien, B. Y. and Hui, B. Y., Effects of Foam-Mat Oven Drying Towards the Physicochemical Properties of Banana (Musa paradisiaca) Peel Powder, Malays. J. Chem., 26(3), 362-372 (2024).
https://doi.org/10.55373/mjchem.v26i3.362
Kavimani, V., Paramasivam, B., Sasikumar, R. and Venkatesh, S., A CRITIC integrated WASPAS approach for selection of natural and synthetic fibers embedded hybrid polymer composite configuration, Multiscale and Multidiscip. Model. Exp. and Des., 7(3), 1721–1736 (2024).
https://doi.org/10.1007/s41939-023-00301-6
Kharbanda, A. K., Sinha, S. K. and Kamalraj, D., Investigation of the mechanical properties of non-conventional fiber materials suitable for sportswear applications in order to achieve an innovative, sustainable, and eco-friendly design, Baghdad, Iraq, 2800(1), 020173 (2023).
https://doi.org/10.1063/5.0163140
Kore, S., Spencer, R., Ghossein, H., Slaven, L., Knight, D., Unser, J. and Vaidya, U., Performance of hybridized bamboo-carbon fiber reinforced polypropylene composites processed using wet laid technique, Composites Part C: Open Access, 6, 100185 (2021).
https://doi.org/10.1016/j.jcomc.2021.100185
Laxshaman, R. B., Makode, Y., Tiwari, A., Dubey, O., Sharma, S. and Mishra, V., Review on properties of banana fiber reinforced polymer composites, Mater. Today Proc., 472825–2829 (2021).
https://doi.org/10.1016/j.matpr.2021.03.558
Mahajan, A., Binaz, V., Singh, I. and Arora, N., Selection of Natural Fiber for Sustainable Composites Using Hybrid Multi Criteria Decision Making Techniques, Composites Part C: Open Access, 7, 100224 (2022).
https://doi.org/10.1016/j.jcomc.2021.100224
Naeem, M. A., Siddiqui, Q., Khan, M. R., Mushtaq, M., Wasim, M., Farooq, A., Naveed, T. and Wei, Q., Bacterial cellulose-natural fiber composites produced by fibers extracted from banana peel waste, Journal of Industrial Textiles, 51(1_suppl), 990S-1006S (2022).
https://doi.org/10.1177/1528083720925848
Natrayan, L., Janardhan, G., Paramasivam, P. and Dhanasekaran, S., Enhancing mechanical performance of TiO2 filler with Kevlar/epoxy-based hybrid composites in a cryogenic environment: a statistical optimization study using RSM and ANN methods, Front. Mater., 10, 1267514 (2023).
https://doi.org/10.3389/fmats.2023.1267514
Ng, Q. H., Kalaiarasi, V., Teoh, Y. P., Ooi, Z. X., Shuit, S. H. and Low, C. Y., Effect of banana peel waste concentration and mixing rate to the tensile strength of polyvinyl alcohol/banana peel waste composite film: optimization study via statistical tool, IOP Conf. Ser.: Earth Environ. Sci., 765(1), 012031 (2021).
https://doi.org/10.1088/1755-1315/765/1/012031
Pandey, R., Sinha, M. K. and Dubey, A., Cellulosic fibers from Lotus ( Nelumbo nucifera ) peduncle, J. Nat. Fibers, 17(2), 298–309 (2020).
https://doi.org/10.1080/15440478.2018.1492486
Periyappillai, G., Sathiyamurthy, S. and Saravanakumar, S., Optimized Machine Learning Prediction and RSM Optimization of Mechanical Properties in Boiled Eggshell Filler-Added Biocomposites, Fibers Polym., 25(8), 3115–3133 (2024).
https://doi.org/10.1007/s12221-024-00638-w
Pratap, S. A., Senthil, K. M., Deshpande, A., Jain, G., Khamesra, J., Mhetre, S., Awasthi, A. and Natrayan, L., Processing and characterization mechanical properties of AA2024/Al2O3/ ZrO2/Gr reinforced hybrid composite using stir casting technique, Mater. Today Proc., 371562–1566 (2021).
https://doi.org/10.1016/j.matpr.2020.07.156
Rodrigues, M. C. K., Oro, C. E. D., Puton, B. M. S., Wisniewski, M. S. W., Fernandes, I. A., Cansian, R. L., Backes, G. T. and Junges, A., Potential use of green banana peel waste: modeling of drying and determination of physicochemical and antioxidant properties, Biomass Conv. Bioref., 14(13), 14095–14106 (2024).
https://doi.org/10.1007/s13399-022-03511-z
Samant, L., Goel, A., Mathew, J., Jose, S. and Thomas, S., Effect of surface treatment on flax fiber reinforced natural rubber green composite, J. Appl. Polym. Sci., 140(12), e53651 (2023).
https://doi.org/10.1002/app.53651
Saravanan, N., Navin, K. B., Bharathiraja, G. and Pandiyarajan, R., Optimization and characterization of surface treated Lagenaria siceraria fiber and its reinforcement effect on epoxy composites, PRT, 52(2), 273–284 (2023).
https://doi.org/10.1108/PRT-08-2021-0093
Seculi, F., Espinach, F. X., Julián, F., Delgado-Aguilar, M., Mutjé, P. and Tarrés, Q., Comparative evaluation of the stiffness of abaca-fiber-reinforced bio-polyethylene and high-density polyethylene composites, Polym., 15(5), 1096 (2023).
https://doi.org/10.3390/polym15051096
Sengottaiyan, S., Subbarayan, S., Viswanathan, V. and Pugazhendi, P., Optimized machine learning with hyperparameter tuning and response surface methodology for predicting tribological performance in bio‐composite materials, Polym. Compos., 45(10), 9421–9439 (2024).
https://doi.org/10.1002/pc.28418
Shireesha, Y., and Govind, N., Optimization Using Response Surface Methodology And Artificial Neural Network In Geared Drilling, Int. J. Mod. Manuf. Technol., 13(2), 116–123 (2021).
https://doi.org/10.54684/ijmmt.2021.13.2.116
Singh, T., Da-Silva, G. G., Singh, V., Ferreira, N. F., Yesukai, D. B. L., Lasch, G., Poletto, J. C., Ali, S., and Neis, P. D., Selection of automotive brake friction composites reinforced by agro-waste and natural fiber: An integrated multi-criteria decision-making approach, Results Eng., 22, 102030 (2024).
https://doi.org/10.1016/j.rineng.2024.102030
Singh, T., Singh, V., Ranakoti, L. and Kumar, S., Optimization on tribological properties of natural fiber reinforced brake friction composite materials: Effect of objective and subjective weighting methods, Polym. Test., 117, 107873 (2023).
https://doi.org/10.1016/j.polymertesting.2022.107873
Tej, S., Amit, A., Lalit, R., Prabhakar, B., Vedant, S. and László, L., Performance Optimization of Lignocellulosic Fiber-Reinforced Brake Friction Composite Materials Using an Integrated CRITIC-CODAS-Based Decision-Making Approach, Sustainability, 15(11), 8880 (2023).
https://doi.org/10.3390/su15118880
Venkatachalam, G., Hemanth, V., Logesh, M., Piyush, A., Siva, K. M., Pragasam, V. and Loganathan, T. G., Investigation of Tensile Behavior of Carbon Nanotube/Coir Fiber/Fly Ash Reinforced Epoxy Polymer Matrix Composite, J. Nat. Fibers, 20(1), 2148151 (2023).
https://doi.org/10.1080/15440478.2022.2148151
Warrier, A. S., Krishnapriya, R., Harikrishnan, M. P., Nandhu, L. A. M., Anirudh, M. K. and Kothakota, A., Developing sustainable packaging alternatives for plastic carry bags: Utilizing reinforced lotus fiber with casein bio-coating for enhanced performance, Sustainable Chem. Pharm., 39101564 (2024).
https://doi.org/10.1016/j.scp.2024.101564
Zaidan, U. H., Ghani, N. L. A., Zahari, N. S., Abdul, R. M. B. H. and Abd, G. S. S., Biofunctional characteristics of banana peel dietary fiber (BPDF) and its associated in vitro antidiabetic properties, Int. Food Res. J., 28(2), 401–406 (2021).
https://doi.org/10.47836/ifrj.28.2.22
Zhang, J., Han, G., Zhang, Y., Gong, Y. and Jiang, W., Preparation of lotus nanofibers-alginate porous membranes for biomedical applications, BioRes, 15(3), 6471–6487 (2020).