Open Access

Preparation of FeCl3 Catalytic Films Using Dip Dry Method for the Growth of Carbon Nanotubes

Mohan Lal, mohan.lal@sspl.drdo.in
Solid State Physics Laboratory, DRDO, New Delhi, India.
Bharat Bhushan Sharma, D.A.V.Institute of Engineering and Technology, Jalandhar, Punjap, India. Poornendu Chaturvedi, Solid State Physics Laboratory, DRDO, New Delhi, India. PikaJha, Solid State Physics Laboratory, DRDO, New Delhi, India. Jaswant Singh Rawat, Solid State Physics Laboratory, DRDO, New Delhi, India. Partap Kumar Chaudhury Solid State Physics Laboratory, DRDO, New Delhi, India.


J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 28-34

https://doi.org/10.13074/jent.2013.02.121029

PDF


Abstract

Catalytic films of FeCl3 were coated on Si using simple and highly scalable technique of dip drying of silicon in aqueous FeCl3 solution. The catalyst coated samples were pretreated at 850 oC to reduce the deposited FeCl3 into iron nanoparticles. The size distribution of nanoparticles was found to be strongly dependent on initial concentration of FeCl3 in aqueous solution. The catalytic activity of nanoparticles was ascertained by growthof carbon nanotubes using Chemical Vapour Deposition. The C2H2was used as the carbon precursed along with the carrier gas of H2 and NH3 .Characterization of the grown CNT revealed the direct relationship between the catalytic concentration and the diameter of carbon nanotubes.

Full Text

Reference


Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes—the route toward applications. Science.,297(5582), 787-792 ( 2002).

http://dx.doi.org/10.1126/science.1060928

Chakraborty, A.K., et al., Chemical vapor deposition growth of carbon nanotubes on Si substrates using Fe catalyst: What happens at the nanotube/Fe/Si interface. Journal of Applied Physics.,100(8), 084321-08326 ( 2006).

http://dx.doi.org/10.1063/1.2360774

Choi, W.B., et al., Fully sealed, high-brightness carbonnanotube field-emission display. Applied Physics Letters., 75(20), 3129-3131 (1999).

http://dx.doi.org/10.1063/1.125253

Dalton, A.B., et al., Super-tough carbon-nanotube fibres. Nature., 423(6941), 703-703 (2003).

http://dx.doi.org/10.1038/423703a

Durrer, L., et al. SWNT Growth by LPCVD on Ferritin- Based Iron Catalyst Nanoparticles Towards CNT Sensors. in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 2007.

Esconjauregui, S., C.M. Whelan, and K. Maex, The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon., 47(3), 659-669 (2009).

http://dx.doi.org/10.1016/j.carbon.2008.10.047

Fu, Q., S. Huang, and J. Liu, Chemical Vapor Depositions of Single-Walled Carbon Nanotubes Catalyzed by Uniform Fe2O3 Nanoclusters Synthesized Using Diblock Copolymer Micelles. The Journal of Physical Chemistry B., 108(20), 6124-6129 (2004).

http://dx.doi.org/10.1021/jp049483+

Hart, A.J., A.H. Slocum, and L. Royer, Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation. Carbon., 44(2), 348-359 (2006).

http://dx.doi.org/10.1016/j.carbon.2005.07.008

Hart, A.J., et al., Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces. Nanotechnology.,17(5), 1397 (2006).

http://dx.doi.org/10.1088/0957-4484/17/5/039

Hou, H., et al., Large-Scale Synthesis of Aligned Carbon Nanotubes Using FeCl3 as Floating Catalyst Precursor. Chemistry of Materials., 15(2), 580-585 (2003).

http://dx.doi.org/10.1021/cm020970g

Iijima, S., Helical microtubules of graphitic carbon. Nature., 354(6348), 56-58 (1991).

http://dx.doi.org/10.1038/354056a0

Kim, D.Y., et al., The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure. Diamond and Related Materials., 14(11-12), 2084-2088 (2005).

http://dx.doi.org/10.1016/j.diamond.2005.08.017

Lee, S.S., et al., Control over the Diameter, Length, and Structure of Carbon Nanotube Carpets Using Aluminum Ferrite and Iron Oxide Nanocrystals as Catalyst Precursors. The Journal of Physical Chemistry C., 116(18),10287-10295.

http://dx.doi.org/10.1021/jp212404j

Mukul, K., Carbon Nanotube Synthesis and Growth Mechanism.Intech, 2011.

Puretzky, A.A., et al., Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Physical Review B., 65(24), 245425 (2002).

http://dx.doi.org/10.1103/PhysRevB.65.245425

Saito, Y., et al., Field emission of carbon nanotubes and its application as electron sources of ultra-high luminance light-source devices. Physica B: Condensed Matter., 323(1–4) 30-37 (2002).

http://dx.doi.org/10.1016/S0921-4526(02)00961-4

Saito, Y., T. Nakahira, and S. Uemura, Growth Conditions of Double-Walled Carbon Nanotubes in Arc Discharge. The Journal of Physical Chemistry B.,107(4), 931-934 (2003).

http://dx.doi.org/10.1021/jp021367o

Scott, C.D., et al., Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A: Materials Science & Processing.,72(5), 573-580 ( 2001).

http://dx.doi.org/10.1007/s003390100761

Su, C.C., et al., Two dimensional carbon nanotube based strain sensor. Sensors and Actuators A: Physical., 176(0), 124-129.

Ting, Z., et al., Recent progress in carbon nanotube-based gas sensors. Nanotechnology., 19(33), 332001 (2008).

http://dx.doi.org/10.1088/0957-4484/19/33/332001

Wang, X.K., et al., Carbon nanotubes synthesized in a hydrogen arc discharge. Applied Physics Letters., 66(18), 2430-2432 (1995).

http://dx.doi.org/10.1063/1.113963

Yang, K. and M. Gu, Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing. 41(2), 215-221.

http://dx.doi.org/10.1016/j.compositesa.2009.10.019

Zheng, R., et al., The effect of ion sputtering of silicon substrates on the catalyst morphology and growth of carbon nanotube arrays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268(6), 568-572.

http://dx.doi.org/10.1016/j.nimb.2009.12.015

Contact Us

Powered by

Powered by OJS