Open Access

Development and Characterization of an Eco-friendly Stishovite Clay-manganese Dioxide Nanocomposite for Efficient Dye Removal from Wastewater

K. Prabhakaran, prabhakaranchemist@gmail.com
Center for Environmental Research, Department of Chemistry, Kongu Engineering College, Perundurai, Erode, TN, India
T. Mohanapriya , Department of Chemistry, Erode Arts and Science College, Erode, TN, India M. G. Geena, Department of Agriculture Engineering, Dhanalakshmi Srinivasan University, Trichy, TN, India E. Kavitha Department of Civil Engineering, Aishwarya College of Engineering and Technology, Bhavani, Erode, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 295-303

https://doi.org/10.13074/jent.2024.12.244979

PDF


Abstract

The contamination of water bodies with artificial dyes causes serious health and ecologicalconcerns. The discharge of dyes into water systems from various industries, including textiles, paper, and others, causes significant ecological disturbances and poses health risks to humans. This study deals with the development of eco-friendly Nano composite made with stishovite clay and MnO2 for the purpose of removing dye pollutants from wastewater through adsorption. The composite's adsorptive capabilities are improved by the addition of MnO₂, while the stishovite clay serves as a stable matrix. The various material characterization technique was employed both stishovite clay and Nano composite sample. X-ray diffarction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis were all employed to characterize the nanocomposite thoroughly. XRD confirmed the presence of crystals, whereas FT-IR revealed excellent incorporation of MnO₂, with vibrational peaks unique to the composite structure. SEM and TEM revealed improved surface shape and dispersion of MnO₂ nanoparticles, leading to an increase in surface area. The BET study demonstrated a substantial increase in both the pore volume and surface area, a critical factor in the enhancement of dye adsorption capability. According to the results, the stishovite-MnO₂ nanocomposite is a long-term, environmentally friendly, and very effective way to deal with dye pollution.

Full Text

Reference


Adesanmi, B. M., Hung, Y. T., Paul, H. H. and Huhnke, C. R., Comparison of dye wastewater treatment methods: A review,GSC Adv. Res. Rev., 10(2), 126–137 (2022).

https://doi.org/10.30574/gscarr.2022.10.2.0054

Alahmadi, N., Recent progress in photocatalytic removal of environmental pollution hazards in water using nanostructured materials, Sep., 9(10), 264 (2022).

https://doi.org/10.3390/separations9100264

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y. and Sun, J., A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,Ecotoxicol. Environ. Saf., 231, 113160 (2022).

https://doi.org/10.1016/j.ecoenv.2022.113160

Anastas, P. T. and Warner, J. C., Green Chemistry: Theory and Practice, Oxford University Press (1998).

Anjum, M., Liu, W., Qadeer, S. and Khalid, A., Photocatalytic treatment of wastewater using nanoporous aerogels: Opportunities and challenges, Emerg. Technol. Treat. Toxic Metals Wastewater, 495–523. Elsevier (2023).

https://doi.org/10.1016/B978-0-12-822086-7.00024-2

Arunvivek, G. K., Preetha, A., Bragadeeswaran, T. and Mahendran, D., Study on Behavior of Paper Industry Treated Effluent as Mixing Water in Concrete for Pollution Control and Sustainable Development. Int. J. Eng. Res. Technol., 3(8), 1049–1051 (2014).

Benkhaya, S., M’rabet, S., Hsissou, R. and El Harfi, A., Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal,J. Mater. Res. Technol., 9(3), 4763–4772 (2020).

https://doi.org/10.1016/j.jmrt.2020.02.102

Cardona, Y., Węgrzyn, A., Miśkowiec, P., Korili, S. A. and Gil, A., Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source, Chem. Eng. J., 446, 136908 (2022).

https://doi.org/10.1016/j.cej.2022.136908

Chitradevi, R., Jeyaraj, M., Ghadamode, V. D., Poonkodi, K., Venkadasamy, R. andMagudeswaran, P. N., Assessment of water quality using modified water quality index and geographical information system in Madathukulam Taluk, Tiruppur District, Tamil Nadu, India, Orient. J. Chem., 37(5), 1210–1220 (2021).

https://doi.org/10.13005/ojc/370528

Cho, D. W., Jeon, B. H., Chon, C. M., Kim, Y., Schwartz, F. W., Lee, E. S. and Song, H., A novel chitosan/clay/magnetite composite for adsorption of Cu (II) and As (V), Chem. Eng. J., 200, 654–662 (2012).

https://doi.org/10.1016/j.cej.2012.06.126

Demirbas, A., Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167(1–3), 1–9 (2009).

https://doi.org/10.1016/j.jhazmat.2008.12.114

Dong, W., Zang, L. and Li, H., Application of MnO2 materials to dye removal from aqueous solution by adsorption, Appl. Mech. Mater., 361-363, 760–763 (2013).

https://doi.org/10.4028/www.scientific.net/AMM.361-363.760

Ebrahimi, F., Nabavi, S. R. and Omrani, A., Fabrication of hydrophilic hierarchical PAN/SiO2 nanofibers by electrospray assisted electrospinning for efficient removal of cationic dyes, Environ. Technol. Innov., 25, 102258 (2022).

https://doi.org/10.1016/j.eti.2021.102258

El-Kassimi, A., Achour, Y., El Himri, M., Laamari, M. R. and El Haddad, M., High efficiency of natural Safiot clay to remove industrial dyes from aqueous media: Kinetic, isotherm adsorption and thermodynamic studies,Biointerface Res. Appl. Chem., 11(5), 12717–12731 (2021).

https://doi.org/10.33263/BRIAC115.1271712731

Eletta, O. A. A., Mustapha, S. I., Ajayi, O. A. and Ahmed, A. T., Optimization of dye removal from textile wastewater using activated carbon from sawdust, Niger. J. Technol. Dev., 15(1), 26 (2018).

https://doi.org/10.4314/njtd.v15i1.5

Garg, S. K. and Tripathi, M., Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Res. J. Microbiol., 12, 1–19 (2017).

https://doi.org/10.3923/jm.2017.1.19

Gimbert, F., Morin-Crini, N., Renault, F., Badot, P. M. and Crini, G., Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis, J. Hazard. Mater., 157(1), 34–46 (2008).

https://doi.org/10.1016/j.jhazmat.2007.12.072

Gupta, V. K. and Suhas., Application of low-cost adsorbents for dye removal – A review, J. Environ. Manage., 90(8), 2313–2342 (2009).

https://doi.org/10.1016/j.jenvman.2008.11.017

Ismadji, S., Shen, D., Edi, F., Ayucitra, A., Hua, W. and Hui, C., Bentonite hydrochar composite for removal of ammonium from Koi fish tank, Appl. Clay Sci., 119(1), 146-154 (2016).

https://doi.org/10.1016/j.clay.2015.08.022

Jana, S., Ray, J., Mondal, B. and Tripathy, T., Efficient and selective removal of cationic organic dyes from their aqueous solutions by a nanocomposite hydrogel, katira gum-cl-poly (acrylic acid-co-N, N-dimethylacrylamide)@bentonite, Appl. Clay Sci., 173, 46–64 (2019).

https://doi.org/10.1016/j.clay.2019.03.009

Januário, E. F. D., Vidovix, T. B., Bergamasco, R. and Vieira, A. M. S., Performance of a hybrid coagulation/flocculation process followed by modified microfiltration membranes for the removal of Solophenyl Blue dye,Chem. Eng. Process. Process Intensif., 168, 108577 (2021).

https://doi.org/10.1016/j.cep.2021.108577

Joshi, P., Gupta, K., Gusain, R. and Khatri, O., Metal oxide nanocomposites for wastewater treatment, Adv. Water Treat. Environ. Manage., 283–314. Wiley (2020).

https://doi.org/10.1002/9781119364726.ch11

Khan, S. H. and Pathak, B., Zinc oxide-based photocatalytic degradation of persistent pesticides: A comprehensive review, Environ. Nanotechnol. Monit. Manag, 13, 100290 (2020).

https://doi.org/10.1016/j.enmm.2020.100290

Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R. andBharagava, R. N., Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Environ. Chem. Eng., 9, 105012 (2021).

https://doi.org/10.1016/j.jece.2020.105012

Lou, Z., Li, R., Liu, J., Wang, Q., Zhang, Y. and Li, Y., Used dye adsorbent derived N-doped magnetic carbon foam with enhanced electromagnetic wave absorption performance, J. Alloys Compd., 854, 157286 (2021).

https://doi.org/10.1016/j.jallcom.2020.157286

Mahmoud, M. E., Amira, M. F., Azab, M. M. H. M. and Abdelfattah, A. M., An innovative aminomagnetite@grapheneoxide@amino-manganese dioxide as a nitrogen-rich nanocomposite for removal of Congo red dye, Diam. Relat. Mater., 121, 108744 (2022).

https://doi.org/10.1016/j.diamond.2021.108744

Mariyam, A., Mittal, J., Sakina, F., Baker, R. T., Sharma, A. K. and Mittal, A., Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arab. J. Chem., 14(6), 103186 (2021).

https://doi.org/10.1016/j.arabjc.2021.103186

Moneer, A. A., El-Mallah, N. M., Ramadan, M. S. and Shaker, A. M., Removal of Acid Green 20 and Reactive Yellow 17 dyes by aluminum electrocoagulation technique in a single and a binary dye system, Egypt. J. Aquat. Res., 47(2), 223–230 (2021). https://doi.org/10.1016/j.ejar.2021.04.004

Mudhoo, A., Ramasamy, D. L., Bhatnagar, A. A., Usman, M. and Sillanpaa, M., An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes, and xenobiotics from soils and aqueous milieus, Ecotoxicol. Environ. Saf., 197, 110587 (2020).

https://doi.org/10.1016/j.ecoenv.2020.110587

Pan, D., Ge, S., Tian, J., Shao, Q., Guo, L., Liu, H., Wu, S., Ding, T. and Guo, Z., Research progress in the field of adsorption and catalytic degradation of sewage by hydrotalcite-derived materials, Chem. Rec., 20(4), 355–369 (2020).

https://doi.org/10.1002/tcr.201900071

Parmar, S., Daki, S., Bhattacharya, S. and Shrivastav, A., Microorganism: An eco-friendly tool for waste management and environmental safety, Dev. Wastewater Treat. Res. Process., 175–193. Elsevier (2022).

https://doi.org/10.1016/B978-0-323-85657-7.00001-8

Raval, R., Kohli, H. P. and Mahadwad, O. K., Application of emulsion liquid membrane for removal of malachite green dye from aqueous solution: Extraction and stability studies, Chem. Eng. J. Adv., 12, 100398 (2022).

https://doi.org/10.1016/j.ceja.2022.100398

Roa, K., Oyarce, E., Boulett, A., ALSamman, M., Oyarzún, D., Pizarro, G. D. C. and Sánchez, J. Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain. Mater. Technol., 29, e00320 (2021).

https://doi.org/10.1016/j.susmat.2021.e00320

Saad, A. and Atia, A., Review on freshwater blue-green algae (cyanobacteria): occurrence, classification and toxicology,Biosci. Biotechnol. Res. Asia, 11, 1319–1325 (2014).

https://doi.org/10.13005/bbra/1522

Saleem, H. and Zaidi, S. J., Developments in the application of nanomaterials for water treatment and their impact on the environment, Nanomater., 10(9), 1764 (2020).

https://doi.org/10.3390/nano10091764

Shajeelammal, J., Mohammed, S., Prathish, K. P., Jeeva, A., Asok, A. and Shukla, S., Advances in treatment of real-time textile effluent containing azo reactive dyes via ozonation, modified pulsed low frequency ultrasound cavitation, and integrated reactor, J. Hazard. Mater. Adv., 7, 100098 (2022).

https://doi.org/10.1016/j.hazadv.2022.100098

Talaiekhozani, A., Mosayebi, M. R., Fulazzaky, M. A., Eskandari, Z. and Sanayee, R., Combination of TiO2 microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater, Alex. Eng. J., 59(2), 549–563 (2020).

https://doi.org/10.1016/j.aej.2020.01.052

Tang, Z., Ma, D., Chen, Q., Wang, Y., Sun, M., Lian, Q., Shang, J., Wong, P. K., He, C. and Xia, D., Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms, J. Hazard. Mater., 437, 129373 (2022).

https://doi.org/10.1016/j.jhazmat.2022.129373

Xiang, J., Wang, X., Ding, M., Tang, X., Zhang, S., Zhang, X. and Xie, Z., The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance, Chemosphere, 294, 133728 (2022).

https://doi.org/10.1016/j.chemosphere.2022.133728

Yadav, A., Bagotia, N., Yadav, S., Sharma, A. K. and Kumar, S., Adsorptive studies on the removal of dyes from single and binary systems using Saccharummunja plant-based novel functionalized CNT composites, Environ. Technol. Innov., 24, 102015 (2021).

https://doi.org/10.1016/j.eti.2021.102015

Yadav, M., Thakore, S. and Jadeja, R., Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent: An ecofriendly approach, Environ. Chem. Ecotoxicol., 4, 67–77 (2022).

https://doi.org/10.1016/j.enceco.2021.12.003

Yagub, M. T., Sen, T. K., Afroze, S. and Ang, H. M., Dye and its removal from aqueous solution by adsorption: A review, Adv. Coll. Int. Sci., 209, 172–184 (2014).

https://doi.org/10.1016/j.cis.2014.04.002

Younis, S. A., Serp, P. S. and Nassar, H. N., Photocatalytic and biocidal activities of ZnTiO2 oxynitrite heterojunction with MOF-5 and G-C3N4: A case study for textile wastewater treatment under direct sunlight, J. Hazard. Mater., 410, 124562 (2021).

https://doi.org/10.1016/j.jhazmat.2021.124562

Zhao, B., Zhao, Y., Liu, P., Men, Y. L. and Pan, Y. X., Degradation of organic dyes by hierarchical porous carbon derived from iron-containing biomass, Chem. Eng. J., 443, 136290 (2022).

https://doi.org/10.1016/j.cej.2022.136290

Zupko, R., Kamath, D., Coscarelli, E., Rouleau, M. and Minakata, D., Agent-based model to predict the fate of the degradation of organic compounds in the aqueous-phase UV/H2O2 advanced oxidation process, Process Saf. Environ. Prot., 136, 49–55 (2020). https://doi.org/10.1016/j.psep.2020.01.023

Contact Us

Powered by

Powered by OJS