Formulation and Features of Chitosan and Natural Fiber Blended Bio-composite towards Environmental Sustainability
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 104-112
Abstract
This experimental investigation deals with the mechanical and tribological characteristics of biocomposite material made from polylactic acid (PLA), kenaf fiber (KF) and nano chitosan particles (nCp) through injection moulding approach for possible applications in biodegradable packaging, tissue engineering, wound dressing, and interior components of automobiles. Varying proportions of nCp (extracted from the crab shell) viz., 0, 1, 2, 3, and 4 wt.% are added in PLA matrix, strengthened with 30% of KF. The prepared composites are characterized as per the ASTM standard. Research indicates that incorporating 3 wt.% nCp into PLA-KF composites, produces noticeable improvements in mechanical strength. nCp acts as an effective interfacial agent, improving the bonding between PLA and KF leading to better stress distribution and higher mechanical performance. However, higher concentrations of nCp result in diminishing properties due to agglomeration or phase separation. nCp acts as a filler or surface modifier that enhances the composite's ability to withstand wear and reduce friction between surfaces in contact. Higher nCp addition (4 wt.%) results in poor dispersion, resulting in uneven stress distribution and weaker bonding of fiber with matrix, surface defects and accelerated material degradation occurs during use.
Full Text
Reference
Atiqah, A. A. F., Tharazi, I., Bakar, S. A., Che, O. R., Muhamad, N., Mechanical durability and degradation characteristics of long kenaf-reinforced PLA composites fabricated using an eco-friendly method, Eng. Sci. Technol. an Int. J. 57, 101820 (2024).
https://doi.org/10.1016/j.jestch.2024.101820
Alemu, D., Getachew, E. and Mondal, A. K., Study on the Physicochemical Properties of Chitosan and their Applications in the Biomedical Sector, Int. J. Polym. Sci. 2023, 1–13 (2023).
https://doi.org/10.1155/2023/5025341
Arul, J. K. A. and Srinivasan, V., Thermal characteristics of chitosan dispersed poly lactic acid/basalt hybrid composites, Mater. Express, 6(4), 337–343 (2016).
https://doi.org/10.1166/mex.2016.1310
Arul, J. K. A. and Srinivasan, V., Wear Behavior of Chitosan‐Filled Polylactic Acid/Basalt Fiber Hybrid Composites, Adv. Polym. Technol., 37(3), 898–905 (2018).
https://doi.org/10.1002/adv.21735
Ashothaman, A., Sudha, J. and Senthilkumar, N., A comprehensive review on biodegradable polylactic acid polymer matrix composite material reinforced with synthetic and natural fibers, Mater. Today Proc., 80, 2829–2839 (2023).
https://doi.org/10.1016/j.matpr.2021.07.047
Bhambure, S. S., Rao, A. S., Senthilkumar, T., Analysis of Mechanical Properties of Kenaf and Kapok Fiber Reinforced Hybrid Polyester Composite, J Nat Fibers.
https://doi.org/10.1080/15440478.2022.2156964
Han, S. O., Karevan, M., Sim, I. N., Bhuiyan, M. A., Jang, Y. H., Ghaffar, J. and Kalaitzidou, K., Understanding the Reinforcing Mechanisms in Kenaf Fiber/PLA and Kenaf Fiber/PP Composites: A Comparative Study, Int. J. Polym. Sci., 2012, 1–8 (2012).
https://doi.org/10.1155/2012/679252
Hisham, F., Maziati, A. M. H., Ahmad, F., Ahmad, K. and Samat, N., Biopolymer chitosan: Potential sources, extraction methods, and emerging applications, Ain Shams Eng. J., 15(2), 102424 (2024).
https://doi.org/10.1016/j.asej.2023.102424
Hui, I., Pasquier, E., Solberg, A., Agrenius, K., Håkansson, J. and Chinga-Carrasco, G., Biocomposites containing poly(lactic acid) and chitosan for 3D printing – Assessment of mechanical, antibacterial and in vitro biodegradability properties, J. Mech. Behav. Biomed. Mater., 147, 106136 (2023).
https://doi.org/10.1016/j.jmbbm.2023.106136
Kamaludin, N. H. I., Ismail, H., Rusli, A., Ting, S. S., Thermal behavior and water absorption kinetics of polylactic acid/chitosan biocomposites, Iran. Polym. J., 30(2), 135–147 (2021).
https://doi.org/10.1007/s13726-020-00879-5
Khan, A., Sapuan, S. M., Siddiqui, V. U., Zainudin, E. S., Zuhri, M. Y. M., Harussani, M. M., A review of recent developments in kenaf fiber/polylactic acid composites research, Int. J. Biol. Macromol. 253, 127119 (2023).
https://doi.org/10.1016/j.ijbiomac.2023.127119
Kumar, R. S., Muralidharan, N. and Sathyamurthy, R., Optimization of Alkali Treatment Process Parameters for Kenaf Fiber: Experiments Design, J. Nat. Fibers, 19(11), 4276–4285 (2022).
https://doi.org/10.1080/15440478.2020.1856276
Kumar, S. and Singh, K., Tribological behaviour of fibre-reinforced thermoset polymer composites: A review, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 234(11), 1439–1449 (2020).
https://doi.org/10.1177/1464420720941554
Li, L., Ding, S. and Zhou, C., Preparation and degradation of PLA/chitosan composite materials, J. Appl. Polym. Sci., 91(1), 274–277 (2004).
https://doi.org/10.1002/app.12954
Senthilkumar, N., Deepanraj, B., Dhinakarraj, C. K. and Yuvaperiyasamy, M., Characterization Studies on Vetiveria Zizanioides Natural Fiber and Graphene Filler Reinforced Nano Polymer Composite Material, J. Environ. Nanotechnol., 13(2), 214–219 (2024).
https://doi.org/10.13074/jent.2024.06.242561
Nasution, H., Olaiya, N. G., Haafiz, M. K. M., Abdullah, C. K., Bakar, S. A., Olaiya, F. G., Mohamed, A. H. P. S., A. K., The role of amphiphilic chitosan in hybrid nanocellulose–reinforced polylactic acid biocomposite, Polym. Adv. Technol. 32(9), 3446–3457 (2021).
https://doi.org/10.1002/pat.5355
Navarro, C. H., Moreno, K. J., Arizmendi-Morquecho, A., Chávez-Valdez, A. and García-Miranda, S., Preparation and tribological properties of chitosan/hydroxyapatite composite coatings applied on ultra high molecular weight polyethylene substrate, J. Plast. Film Sheeting, 28(4), 279–297 (2012).
https://doi.org/10.1177/8756087911434183
Nor, M. A. M., Sapuan, S. M., Yusoff, M. Z. M. and Zainudin, E. S., Mechanical, Thermal and Morphological Properties of Woven Kenaf Fiber Reinforced Polylactic Acid (PLA) Composites, Fibers Polym., 23(10), 2875–2884 (2022).
https://doi.org/10.1007/s12221-022-4370-2
Ochi, S., Mechanical properties of kenaf fibers and kenaf/PLA composites, Mech. Mater., 40(4–5), 446–452 (2008).
https://doi.org/10.1016/j.mechmat.2007.10.006
Özturk, S., Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-reinforced Phenol-Formaldehyde Composites, J. Compos. Mater., 44(19), 2265–2288 (2010).
https://doi.org/10.1177/0021998310364265
Gunasekar, P., Anderson, A., Saravanakumar, S., Suresh Kumar, R., Yuvaperiyasamy, M. and Sabari, K., Synergistic Effects of Bamboo and Jute Fiber Integration in Geopolymer Composites, J. Environ. Nanotechnol., 13(2), 115–126 (2024).
https://doi.org/10.13074/jent.2024.06.242629
Rabbi, M. S., Islam, T., Islam, G. M. S., Injection-molded natural fiber-reinforced polymer composites–a review, Int. J. Mech. Mater. Eng. 16(1), 15 (2021).
https://doi.org/10.1186/s40712-021-00139-1
Rahman, M., Islam, M. N., Ara, M. A., Habib, M. A. and Parvez, M. M. H., Mechanical properties of Kenaf and Palmyra Palm leaf stalk fiber reinforced composite, Results Surf. Interfaces, 15, 100229 (2024).
https://doi.org/10.1016/j.rsurfi.2024.100229
Rajamuneeswaran, S., Jayabal, S., Kalyana Sundaram, S., Balaji, N. S. and Ramkumar, P., Effect of Chitosan Particle Addition on the Tensile and Flexural Strength of Coir Fiber Reinforced Polyester Composites, Appl. Mech. Mater., 813–814, 30–33 (2015).
https://doi.org/10.4028/www.scientific.net/AMM.813-814.30
Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A. and El-Khatib, S., Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites, Materials (Basel)., 15(12), 4312 (2022).
https://doi.org/10.3390/ma15124312
Singh, J. I. P., Sharma, V., Singh, S., Dhawan, V., Belaadi, A., Kumar, R., Sharma, S., Kumar, A., Awwad, F. A., Khan, M. I. and Ismail, E. A. A., Impact of Molding Temperature, Fiber Loading and Chemical Modifications on the Physicomechanical, and Microstructural Morphology Properties of Woven Kenaf Fiber/PLA Composites for Non-Structural Applications, J. Nat. Fibers, 21(1), 1-23(2024).
https://doi.org/10.1080/15440478.2024.2326586
Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L. and Pruncu, C. I., 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold, Polym. Test., 89, 106722 (2020).
https://doi.org/10.1016/j.polymertesting.2020.106722
Surip, S. N., Wan, J. W. N. R. and Bonnia, N. N., Flexural Impact Properties of PLA/Kenaf Fibers Bio-Composites, Mater. Sci. Forum, 894, 29–33 (2017).
https://doi.org/10.4028/www.scientific.net/MSF.894.29
Suzuki, K., A Study on Mechanical Properties of Short Kenaf Fiber Reinforced Polylactide (PLA) Composites, J. Solid Mech. Mater. Eng., 7(3), 439–454 (2013).
https://doi.org/10.1299/jmmp.7.439
Sathish, T. and Saravanan, R., Investigation on Mechanical Properties of Kevlar Fiber and Al2O3 – SiC used Nano-polymer Composite, J. Environ. Nanotechnol., 13(2), 154–159 (2024).
https://doi.org/10.13074/jent.2024.06.242641
Tharazi, I., Abdul, A. F. A., Muhamad, N., Hui, D., Sulong, A. B. and Gaff, M., Effect of fiber orientation and elevated temperature on the mechanical properties of unidirectional continuous kenaf reinforced PLA composites, Rev. Adv. Mater. Sci., 62(1), 20220275(2023).
https://doi.org/10.1515/rams-2022-0275
Torres, H. Y. G., Ortega, D. G. M., Téllez, J. L., Castrejón, J. N. S., Altamirano, T. A., García, P. B. E. and Balmori, R. H., Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained from Shrimp Waste, Materials (Basel)., 11(8), 1465 (2018).
https://doi.org/10.3390/ma11081465
Vasanthkumar, P., Balasundaram, R., Senthilkumar, N., Palanikumar, K., Lenin, K. and Deepanraj, B., Thermal and thermo-mechanical studies on seashell incorporated Nylon-6 polymer composites, J. Mater. Res. Technol., 21, 3154–3168 (2022).
https://doi.org/10.1016/j.jmrt.2022.10.117
Zakaria, Z., Islam, M. S., Hassan, A., Mohamad, H. M. K., Arjmandi, R., Inuwa, I. M. and Hasan, M., Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites, Adv. Mater. Sci. Eng., 2013, 1–7 (2013).