Synthesis and Characterization of Iron Oxide Nanoparticles from Coal Fly Ash Waste and their Application for the Removal of Methyl Red Dye from Aqueous Solutions
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 47-55
Abstract
Coal fly ash is a major global challenge for human health and the environment. Tremendous efforts have been made to develop value-added materials from coal fly ash (CFA). One such attempt was made in this work to recover crude iron fraction from the CFA by the wet magnetic separation method; the extracted crude iron and concentrated HCl were subjected to sonication and heating to obtain iron leachate. In the first step, iron extracted from CFA was mixed with concentrated HCl, sonicated for 2 hours, and heated at 60 ℃. Then, the acidic iron-rich leachate was utilized as a precursor material for forming iron oxides by using NaOH precipitation methods. Then the iron oxide nanoparticles (IONPs) were analyzed using XRD, FT-IR, and FE-SEM techniques. The spherical to cuboidal shape of IONPs of size 80-500 nm was revealed by FE-SEM. The IR showed typical bands at 444, 601, 1101, 1406, 1742, 2007, and 3127 cm-1, while XRD revealed peaks at 31.020° and 44.830° and a small intensity peak at 34.710°, indicating the formation of IONPs. Further, the synthesized IONPs were evaluated for the remediation of methyl red (MR) dye from the simulated wastewater. The adsorption efficiency of MR dye was about 64.75%. Such techniques for utilizing industrial waste for synthesizing value-added materials like IONPs and their application for removing dyes from wastewater make the entire process economical.
Full Text
Reference
Acisli, O., Khataee, A., Darvishi Cheshmeh Soltani, R. and Karaca, S., Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase, Ultrason. Sonochem., 35210–218 (2017).
https://doi.org/10.1016/j.ultsonch.2016.09.020
Alshammari, M., Al Juboury, M.F., Naji, L. A., Faisal, A.A.H., Zhu, H., Al-Ansari, N. and Naushad, M., Synthesis of a Novel Composite Sorbent Coated with Siderite Nanoparticles and its Application for Remediation of Water Contaminated with Congo Red Dye, Int. J. Environ. Res., 14(2), 177–191 (2020).
https://doi.org/10.1007/s41742-020-00245-6
Amari, A., Yadav, V. K., Pathan, S. K., Singh, B., Osman, H., Choudhary, N., Khedher, K. M. and Basnet, A., Remediation of Methyl Red Dye from Aqueous Solutions by Using Biosorbents Developed from Floral Waste, Adsorpt. Sci. Technol., 20231532660 (2023).
https://doi.org/10.1155/2023/1532660
Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W. and Mahmoudi, E., Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application, JOM, 74(9), 3531–3539 (2022).
https://doi.org/10.1007/s11837-022-05380-3
Bahrodin, M. B., Zaidi, N.S., Hussein, N., Sillanpää, M., Prasetyo, D. D. and Syafiuddin, A., Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant, Curr. Pollut. Rep., 7(3), 379–391 (2021).
https://doi.org/10.1007/s40726-021-00191-7
Baldo, C., Ito, A., Krom, M. D., Li, W., Jones, T., Drake, N., Ignatyev, K., Davidson, N. and Shi, Z., Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions, Atmospheric Chem. Phys., 22(9), 6045–6066 (2022).
https://doi.org/10.5194/acp-22-6045-2022
Besenhard, M. O., Panariello, L., Kiefer, C., LaGrow, A. P., Storozhuk, L., Perton, F., Begin, S., Mertz, D., Thanh, N. T. K. and Gavriilidis, A., Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor, Nanoscale, 13(19), 8795–8805 (2021).
https://doi.org/10.1039/D1NR00877C
Bhattarai, M. K, Ashie, M. D., Dugu, S., Subedi, K., Bastakoti, B. P., Morell, G. and Katiyar, R. S., Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red, Molecules, 28(4), (2023).
https://doi.org/10.3390/molecules28041914
Deeraj C., Subburaj T., and Santhosh S. V., Brain Stroke Detection using Magnetic Resonance Imaging, Int. J. Adv. Res. Sci. Commun. Technol., 63–66 (2024).
https://doi.org/10.48175/IJARSCT-19013
Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S. and Witkowska, A.M., A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity, Molecules, 29(15), 3482 (2024).
https://doi.org/10.3390/molecules29153482
Gambhir, R. P., Rohiwal, S.S. and Tiwari, A.P., Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review, Appl. Surf. Sci. Adv., 11100303 (2022).
https://doi.org/10.1016/j.apsadv.2022.100303
González, M. A., López, G. M. M., Vereda, A. E., García, D., Torres, A. and Pavón, J. M. C., Development of a new FT-IR method for the determination of iron oxide. Optimization of the synthesis of suitable magnetic nanoparticles as sorbent in magnetic solid phase extraction, New J. Chem., 41(17), 8804–8811 (2017).
https://doi.org/10.1039/C7NJ01522D
Gritli, I., Chemingui, H., Djebali, K., Mabrouk, W., Hafiane, A., Marzouki, R., Ammar, S., Chtourou, R. and Keshk, S. M. A. S., Methylene Blue Adsorption by Fe3O4 Nanoparticles: An Optimization Study Using Response Surface Methodology, Chem. Eng. Technol., 47 (2024).
https://doi.org/10.1002/ceat.202400006
Gupta, N., Yadav, V. K., Yadav, K. K., Alwetaishi, M., Gnanamoorthy, G., Singh, B., Jeon, B. H., Cabral-Pinto, M. M. S., Choudhary, N., Ali, D. and Nejad, Z. D., Recovery of iron nano minerals from sacred incense sticks ash waste collected from temples collected from temples by wet and dry magnetic separation method, Environ. Technol. Innov., 25, 102150 (2022).
https://doi.org/10.1016/j.eti.2021.102150
Haile, H. L., Abi, T. and Tesfahun, K., Synthesis, characterization and photocatalytic activity of MnO2/Al2O3/Fe2O3 nanocomposite for degradation of malachite green, Afr. J. Pure Appl. Chem., 9(11), 211–222 (2015).
https://doi.org/10.5897/AJPAC2015.0656
Han, B., Zhao, Y., Ma, L., Chen, L., Hou, W., Li, B., Wang, J., Yu, J., Wang, G., He, Y., Ma, M., Zhou, J., Sun, S., Yu, C. and Pan, J., A Minimalist Iron Oxide Nanoprobe for the High‐Resolution Depiction of Stroke by Susceptibility‐Weighted Imaging, Small, 20(44), 2401061 (2024).
https://doi.org/10.1002/smll.202401061
Haswani, A., Torremocha, V. and Lilova, K., Nanotechnology for Neurological Disorders: Application of Nanotechnology in Diagnosing and Treating Neurodegenerative Diseases, J. Stud. Res., 13(2), (2024).
https://doi.org/10.47611/jsrhs.v13i2.6775
Jadhav, A., Chavan, R., Sonawane, S., Kamble, P., Mahajan, S., Vhankhande, B., Ghorpade, R., Chougale, A., Abd El-Salam, N. M., Fouad, H. and Patil, R., J. Nanoelectron. Optoelectron., 19(3), 272-277 (2024).
https://doi.org/10.1166/jno.2024.3571
Jusoh N., Ruseli S. N. N. M., Badri M. F., Husin N. and Hitam S. M. S., Biodecolourization of methyl red dye by bacterial-fungal consortium, Chem. Eng. Trans., 56, 1537–1542 (2017).
https://doi.org/10.3303/CET1756257
Kgosiemang, I. K. R., Adegoke, A. M., Mashele, S. S. and Sekhoacha, M. P., Green synthesis of Iron oxide and Iron dioxide nanoparticles using Euphorbia tirucalli : characterization and antiproliferative evaluation against three breast cancer cell lines, J. Exp. Nanosci., 18(1), 2276276 (2023).
https://doi.org/10.1080/17458080.2023.2276276
Li, X., Ma, B., Wang, C., Chen, Y., Yang, W. and Zhang, W., A sustainable process to recycle aluminum from coal fly ash for simultaneous removal of iron: Solid waste management and evaluation, Miner. Eng., 184107638 (2022).
https://doi.org/10.1016/j.mineng.2022.107638
Liu, C., Ma, S., Zheng, S., Luo, Y., Ding, J., Wang, X. and Zhang, Y., Combined treatment of red mud and coal fly ash by a hydro-chemical process, Hydrometallurgy, 175224–231 (2018).
https://doi.org/10.1016/j.hydromet.2017.11.005
Mahapatra, A., Mishra, B. G. and Hota, G., Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites, Ceram. Int., 39(5), 5443–5451 (2013).
https://doi.org/10.1016/j.ceramint.2012.12.052
Majadleh, M., Shahwan, T., Ahmed, R. B. and Anjass, M., Application of Fe and Cu nanoparticles for methyl orange removal from water and water-ethanol mixtures under various experimental conditions, Water Resour. Ind., 28, (2022).
https://doi.org/10.1016/j.wri.2022.100189
Marinina, O., Nevskaya, M., Jonek-Kowalska, I., Wolniak, R. and Marinin, M., Recycling of Coal Fly Ash as an Example of an Efficient Circular Economy: A Stakeholder Approach, Energies, 14(12), 3597 (2021).
https://doi.org/10.3390/en14123597
Mehta, S., Thakur, A., Kurbah, I., Chauhan, N. and Thakur, R., Nanotechnology in plant nutrition: Ensuring sustainable agriculture through nanofertilizers, J. Plant Nutr. Soil Sci., 187(5), 589–603 (2024).
https://doi.org/10.1002/jpln.202300288
Miao, K., Xia, X., Zou, Y. and Shi, B., Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases, Mol. Pharm., 21(8), 3777–3799 (2024).
https://doi.org/10.1021/acs.molpharmaceut.4c00387
Modi, S., Yadav, V. K., Gacem, A., Ali, I. H., Dave, D., Khan, S. H., Yadav, K. K., Rather, S., Ahn, Y., Son, C. T. and Jeon, B. H., Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles, Water, 14(11), 1749 (2022).
https://doi.org/10.3390/w14111749
Mohebbi, M., Rajabipour, F. and Madadian, E., A framework for identifying the host phases in Coal-derived fly ash, Fuel, 314, 122806 (2022).
https://doi.org/10.1016/j.fuel.2021.122806
Nicola, R., Costişor, O., Ciopec, M., Negrea, A., Lazău, R., Ianăşi, C., Picioruş, E. M., Len, A., Almásy, L., Szerb, E.I. and Putz, A.-M., Silica-Coated Magnetic Nanocomposites for Pb2+ Removal from Aqueous Solution, Appl. Sci., 10(8), 2726 (2020).
https://doi.org/10.3390/app10082726
Paixão, R. M., Silva, L. H. B. R. D., Vieira, M. F., Amorim, M. T. P. D., Bergamasco, R. and Vieira, A. M. S., Enhanced filtration membranes with graphene oxide and tannic acid for textile industry wastewater dye removal, Environ. Technol., 45(1), 1–12 (2024).
https://doi.org/10.1080/09593330.2024.2369733
Patel, D., Patel, B., Yadav, V. K., Sudhakar, M. P., Alharbi, S. A., Salmen, S. H., Patel, I., Choudhary, N. and Patel, A., Silver nanoparticles synthesized from marine algae Spatoglossum asperum: Antioxidant properties and seed germination enhancement, J. Hazard. Mater. Adv., 16, 100478 (2024).
https://doi.org/10.1016/j.hazadv.2024.100478
Patel, S., Desai, R., Patel, B., Ali, D., Dawane, V., Gadhvi, K., Yadav, V.K., Choudhary, N., Sahoo, D. K. and Patel, A., Phytonanofabrication of iron oxide particles from the Acacia jacquemontii plant and their potential application for the removal of brilliant green and Congo red dye from wastewater, Front. Bioeng. Biotechnol., 11, 1319927 (2023).
https://doi.org/10.3389/fbioe.2023.1319927
Patil, N., Bholay, A., Kapadnis, B. and Gaikwad, V., Biodegradation of Model Azo Dye Methyl Red and other Textile Dyes by Isolate Bacillus circulans NPP1, J. Pure Appl. Microbiol., 10(4), 2793–2800 (2016).
https://doi.org/10.22207/JPAM.10.4.38
Perwez, M., Fatima, H., Arshad, M., Meena, V. K. and Ahmad, B., Magnetic iron oxide nanosorbents effective in dye removal, Int. J. Environ. Sci. Technol., 20(5), 5697–5714 (2023).
https://doi.org/10.1007/s13762-022-04003-3
Rafieizonooz, M., Khankhaje, E. and Rezania, S., Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete, J. Build. Eng., 49, 104040 (2022).
https://doi.org/10.1016/j.jobe.2022.104040
Rajendran, S., Wanale, S.G., Gacem, A., Yadav, V. K., Ahmed, I. A., Algethami, J. S., Kakodiya, S. D., Modi, T., Alsuhaibani, A. M., Yadav, K. K. and Cavalu, S., Nanostructured Iron Oxides: Structural, Optical, Magnetic, and Adsorption Characteristics for Cleaning Industrial Effluents, Crystals, 13(3), 472 (2023).
https://doi.org/10.3390/cryst13030472
Rather, M. Y. and Sundarapandian, S., Utilization of Eco‐friendly Copper Oxide Nanoparticles and Iron Oxide Nanorods in Dye Removal from Real Textile Industry Effluent, Part. Part. Syst. Charact., 41, 2300223 (2024).
https://doi.org/10.1002/ppsc.202300223
Sharma, B., Kumari, N., Mathur, S. and Sharma, V., Kinetics and Optimization of Azo Dye Decolorisation Using Green Synthesized Iron-Oxide Nanoparticles: A Pilot Scale Study, Int. J. Environ. Res., 16(4), 38 (2022).
https://doi.org/10.1007/s41742-022-00418-5
Singh, N. J., Wareppam, B., Kumar, A., Singh, K. P., Garg, V. K., Oliveira A. C. and Singh H. L., Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal, J. Mater. Res., 38, 1149–1161 (2023).
https://doi.org/10.1557/s43578-022-00859-w
Sun, X., Badachhape, A., Bhandari, P., Chin, J., Annapragada, A. and Tanifum, E., A dual target molecular magnetic resonance imaging probe for noninvasive profiling of pathologic alpha-synuclein and microgliosis in a mouse model of Parkinson’s disease, Front. Neurosci., 181, 428736 (2024).
https://doi.org/10.3389/fnins.2024.1428736
Sunjidmaa, D., Batdemberel, G. and Takibai, S., A Study of Ferrospheres in the Coal Fly Ash, Open J. Appl. Sci., 09(01), 10–16 (2019).
https://doi.org/10.4236/ojapps.2019.91002
Swathilakshmi, A. V., Abirami, S., Geethamala, G. V., Poonkothai, M., Sudhakar, C., Albasher, G., Alamri, O. and Alsultan, N., Phytonanofabrication of copper oxide mediated by Albizia amara and its photocatalytic efficacy, Mater. Lett., 314, 131911 (2022).
https://doi.org/10.1016/j.matlet.2022.131911
Tai, V. C., Che, H. X., Kong, X. Y., Ho, K. C. and Ng, W. M., Decoding iron oxide nanoparticles from design and development to real world application in water remediation, J. Ind. Eng. Chem., 12782–100 (2023).
https://doi.org/10.1016/j.jiec.2023.07.038
Twinkle., Tewatia, H., Kaushik, J., Sahu, A., Chaudhary, S.K. and Sonkar, S.K., Waste Iron Dust Derived Iron Oxide Nanoparticles for Efficient Adsorption of Multiple Azo Dyes, ACS Sustain. Resour. Manag., 1(2), 278–288 (2024).
https://doi.org/10.1021/acssusresmgt.3c00064
Valeev, D., Mikhailova, A. and Atmadzhidi, A., Kinetics of Iron Extraction from Coal Fly Ash by Hydrochloric Acid Leaching, Metals, 8(7), 533 (2018).
https://doi.org/10.3390/met8070533
Wang, L. K., Wang, M. H. S., Shammas, N. K. and Hahn, H. H., Physicochemical Treatment Consisting of Chemical Coagulation, Precipitation, Sedimentation, and Flotation, In: Wang L. K, Wang M. H. S., Hung Y. T., Integrated Natural Resources Research, Springer International Publishing, Cham, 22, 265–397 (2021).
https://doi.org/10.1007/978-3-030-61002-9_6
Yadav, V. K., Amari, A., Gacem, A., Elboughdiri, N., Eltayeb, L. B. and Fulekar, M. H., Treatment of Fly-Ash-Contaminated Wastewater Loaded with Heavy Metals by Using Fly-Ash-Synthesized Iron Oxide Nanoparticles, Water, 15(5), 908 (2023).
https://doi.org/10.3390/w15050908
Yadav, V. K. and Fulekar, M. H., Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste, Ceramics, 3(3), 384–420 (2020).
https://doi.org/10.3390/ceramics3030034
Yang, Q., Li, Y., Zhao, X., Zhang, J., Cheng, X. and Zhu, N., Recent advances of superparamagnetic iron oxide nanoparticles and its applications in neuroscience under external magnetic field, Appl. Nanosci., 13(8), 5489–5500 (2023).
https://doi.org/10.1007/s13204-023-02803-8
Zanata, L., Tofanello, A., Martinho, H. S., Souza, J. A. and Rosa, D. S., Iron oxide nanoparticles–cellulose: a comprehensive insight on nanoclusters formation, J. Mater. Sci., 57(1), 324–335 (2022).