Open Access

Synthesis and Characterization of Iron Oxide Nanoparticles from Coal Fly Ash Waste and their Application for the Removal of Methyl Red Dye from Aqueous Solutions

Virendra Kumar Yadav, Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, GJ, India Nisha Choudhary, Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, GJ, India Pankaj Kumar, pankajb434@yahoo.com
Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, GJ, India
M. H. Fulekar Centre for Research for Development, Parul University, Wagodia, Vadodara, GJ, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 47-55

https://doi.org/10.13074/jent.2024.12.243926

PDF


Abstract

Coal fly ash is a major global challenge for human health and the environment. Tremendous efforts have been made to develop value-added materials from coal fly ash (CFA). One such attempt was made in this work to recover crude iron fraction from the CFA by the wet magnetic separation method; the extracted crude iron and concentrated HCl were subjected to sonication and heating to obtain iron leachate. In the first step, iron extracted from CFA was mixed with concentrated HCl, sonicated for 2 hours, and heated at 60 ℃. Then, the acidic iron-rich leachate was utilized as a precursor material for forming iron oxides by using NaOH precipitation methods. Then the iron oxide nanoparticles (IONPs) were analyzed using XRD, FT-IR, and FE-SEM techniques. The spherical to cuboidal shape of IONPs of size 80-500 nm was revealed by FE-SEM. The IR showed typical bands at 444, 601, 1101, 1406, 1742, 2007, and 3127 cm-1, while XRD revealed peaks at 31.020° and 44.830° and a small intensity peak at 34.710°, indicating the formation of IONPs. Further, the synthesized IONPs were evaluated for the remediation of methyl red (MR) dye from the simulated wastewater. The adsorption efficiency of MR dye was about 64.75%. Such techniques for utilizing industrial waste for synthesizing value-added materials like IONPs and their application for removing dyes from wastewater make the entire process economical.

Full Text

Reference


Acisli, O., Khataee, A., Darvishi Cheshmeh Soltani, R. and Karaca, S., Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase, Ultrason. Sonochem., 35210–218 (2017).

https://doi.org/10.1016/j.ultsonch.2016.09.020

Alshammari, M., Al Juboury, M.F., Naji, L. A., Faisal, A.A.H., Zhu, H., Al-Ansari, N. and Naushad, M., Synthesis of a Novel Composite Sorbent Coated with Siderite Nanoparticles and its Application for Remediation of Water Contaminated with Congo Red Dye, Int. J. Environ. Res., 14(2), 177–191 (2020).

https://doi.org/10.1007/s41742-020-00245-6

Amari, A., Yadav, V. K., Pathan, S. K., Singh, B., Osman, H., Choudhary, N., Khedher, K. M. and Basnet, A., Remediation of Methyl Red Dye from Aqueous Solutions by Using Biosorbents Developed from Floral Waste, Adsorpt. Sci. Technol., 20231532660 (2023).

https://doi.org/10.1155/2023/1532660

Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W. and Mahmoudi, E., Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application, JOM, 74(9), 3531–3539 (2022).

https://doi.org/10.1007/s11837-022-05380-3

Bahrodin, M. B., Zaidi, N.S., Hussein, N., Sillanpää, M., Prasetyo, D. D. and Syafiuddin, A., Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant, Curr. Pollut. Rep., 7(3), 379–391 (2021).

https://doi.org/10.1007/s40726-021-00191-7

Baldo, C., Ito, A., Krom, M. D., Li, W., Jones, T., Drake, N., Ignatyev, K., Davidson, N. and Shi, Z., Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions, Atmospheric Chem. Phys., 22(9), 6045–6066 (2022).

https://doi.org/10.5194/acp-22-6045-2022

Besenhard, M. O., Panariello, L., Kiefer, C., LaGrow, A. P., Storozhuk, L., Perton, F., Begin, S., Mertz, D., Thanh, N. T. K. and Gavriilidis, A., Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor, Nanoscale, 13(19), 8795–8805 (2021).

https://doi.org/10.1039/D1NR00877C

Bhattarai, M. K, Ashie, M. D., Dugu, S., Subedi, K., Bastakoti, B. P., Morell, G. and Katiyar, R. S., Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red, Molecules, 28(4), (2023).

https://doi.org/10.3390/molecules28041914

Deeraj C., Subburaj T., and Santhosh S. V., Brain Stroke Detection using Magnetic Resonance Imaging, Int. J. Adv. Res. Sci. Commun. Technol., 63–66 (2024).

https://doi.org/10.48175/IJARSCT-19013

Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S. and Witkowska, A.M., A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity, Molecules, 29(15), 3482 (2024).

https://doi.org/10.3390/molecules29153482

Gambhir, R. P., Rohiwal, S.S. and Tiwari, A.P., Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review, Appl. Surf. Sci. Adv., 11100303 (2022).

https://doi.org/10.1016/j.apsadv.2022.100303

González, M. A., López, G. M. M., Vereda, A. E., García, D., Torres, A. and Pavón, J. M. C., Development of a new FT-IR method for the determination of iron oxide. Optimization of the synthesis of suitable magnetic nanoparticles as sorbent in magnetic solid phase extraction, New J. Chem., 41(17), 8804–8811 (2017).

https://doi.org/10.1039/C7NJ01522D

Gritli, I., Chemingui, H., Djebali, K., Mabrouk, W., Hafiane, A., Marzouki, R., Ammar, S., Chtourou, R. and Keshk, S. M. A. S., Methylene Blue Adsorption by Fe3O4 Nanoparticles: An Optimization Study Using Response Surface Methodology, Chem. Eng. Technol., 47 (2024).

https://doi.org/10.1002/ceat.202400006

Gupta, N., Yadav, V. K., Yadav, K. K., Alwetaishi, M., Gnanamoorthy, G., Singh, B., Jeon, B. H., Cabral-Pinto, M. M. S., Choudhary, N., Ali, D. and Nejad, Z. D., Recovery of iron nano minerals from sacred incense sticks ash waste collected from temples collected from temples by wet and dry magnetic separation method, Environ. Technol. Innov., 25, 102150 (2022).

https://doi.org/10.1016/j.eti.2021.102150

Haile, H. L., Abi, T. and Tesfahun, K., Synthesis, characterization and photocatalytic activity of MnO2/Al2O3/Fe2O3 nanocomposite for degradation of malachite green, Afr. J. Pure Appl. Chem., 9(11), 211–222 (2015).

https://doi.org/10.5897/AJPAC2015.0656

Han, B., Zhao, Y., Ma, L., Chen, L., Hou, W., Li, B., Wang, J., Yu, J., Wang, G., He, Y., Ma, M., Zhou, J., Sun, S., Yu, C. and Pan, J., A Minimalist Iron Oxide Nanoprobe for the High‐Resolution Depiction of Stroke by Susceptibility‐Weighted Imaging, Small, 20(44), 2401061 (2024).

https://doi.org/10.1002/smll.202401061

Haswani, A., Torremocha, V. and Lilova, K., Nanotechnology for Neurological Disorders: Application of Nanotechnology in Diagnosing and Treating Neurodegenerative Diseases, J. Stud. Res., 13(2), (2024).

https://doi.org/10.47611/jsrhs.v13i2.6775

Jadhav, A., Chavan, R., Sonawane, S., Kamble, P., Mahajan, S., Vhankhande, B., Ghorpade, R., Chougale, A., Abd El-Salam, N. M., Fouad, H. and Patil, R., J. Nanoelectron. Optoelectron., 19(3), 272-277 (2024).

https://doi.org/10.1166/jno.2024.3571

Jusoh N., Ruseli S. N. N. M., Badri M. F., Husin N. and Hitam S. M. S., Biodecolourization of methyl red dye by bacterial-fungal consortium, Chem. Eng. Trans., 56, 1537–1542 (2017).

https://doi.org/10.3303/CET1756257

Kgosiemang, I. K. R., Adegoke, A. M., Mashele, S. S. and Sekhoacha, M. P., Green synthesis of Iron oxide and Iron dioxide nanoparticles using Euphorbia tirucalli : characterization and antiproliferative evaluation against three breast cancer cell lines, J. Exp. Nanosci., 18(1), 2276276 (2023).

https://doi.org/10.1080/17458080.2023.2276276

Li, X., Ma, B., Wang, C., Chen, Y., Yang, W. and Zhang, W., A sustainable process to recycle aluminum from coal fly ash for simultaneous removal of iron: Solid waste management and evaluation, Miner. Eng., 184107638 (2022).

https://doi.org/10.1016/j.mineng.2022.107638

Liu, C., Ma, S., Zheng, S., Luo, Y., Ding, J., Wang, X. and Zhang, Y., Combined treatment of red mud and coal fly ash by a hydro-chemical process, Hydrometallurgy, 175224–231 (2018).

https://doi.org/10.1016/j.hydromet.2017.11.005

Mahapatra, A., Mishra, B. G. and Hota, G., Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites, Ceram. Int., 39(5), 5443–5451 (2013).

https://doi.org/10.1016/j.ceramint.2012.12.052

Majadleh, M., Shahwan, T., Ahmed, R. B. and Anjass, M., Application of Fe and Cu nanoparticles for methyl orange removal from water and water-ethanol mixtures under various experimental conditions, Water Resour. Ind., 28, (2022).

https://doi.org/10.1016/j.wri.2022.100189

Marinina, O., Nevskaya, M., Jonek-Kowalska, I., Wolniak, R. and Marinin, M., Recycling of Coal Fly Ash as an Example of an Efficient Circular Economy: A Stakeholder Approach, Energies, 14(12), 3597 (2021).

https://doi.org/10.3390/en14123597

Mehta, S., Thakur, A., Kurbah, I., Chauhan, N. and Thakur, R., Nanotechnology in plant nutrition: Ensuring sustainable agriculture through nanofertilizers, J. Plant Nutr. Soil Sci., 187(5), 589–603 (2024).

https://doi.org/10.1002/jpln.202300288

Miao, K., Xia, X., Zou, Y. and Shi, B., Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases, Mol. Pharm., 21(8), 3777–3799 (2024).

https://doi.org/10.1021/acs.molpharmaceut.4c00387

Modi, S., Yadav, V. K., Gacem, A., Ali, I. H., Dave, D., Khan, S. H., Yadav, K. K., Rather, S., Ahn, Y., Son, C. T. and Jeon, B. H., Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles, Water, 14(11), 1749 (2022).

https://doi.org/10.3390/w14111749

Mohebbi, M., Rajabipour, F. and Madadian, E., A framework for identifying the host phases in Coal-derived fly ash, Fuel, 314, 122806 (2022).

https://doi.org/10.1016/j.fuel.2021.122806

Nicola, R., Costişor, O., Ciopec, M., Negrea, A., Lazău, R., Ianăşi, C., Picioruş, E. M., Len, A., Almásy, L., Szerb, E.I. and Putz, A.-M., Silica-Coated Magnetic Nanocomposites for Pb2+ Removal from Aqueous Solution, Appl. Sci., 10(8), 2726 (2020).

https://doi.org/10.3390/app10082726

Paixão, R. M., Silva, L. H. B. R. D., Vieira, M. F., Amorim, M. T. P. D., Bergamasco, R. and Vieira, A. M. S., Enhanced filtration membranes with graphene oxide and tannic acid for textile industry wastewater dye removal, Environ. Technol., 45(1), 1–12 (2024).

https://doi.org/10.1080/09593330.2024.2369733

Patel, D., Patel, B., Yadav, V. K., Sudhakar, M. P., Alharbi, S. A., Salmen, S. H., Patel, I., Choudhary, N. and Patel, A., Silver nanoparticles synthesized from marine algae Spatoglossum asperum: Antioxidant properties and seed germination enhancement, J. Hazard. Mater. Adv., 16, 100478 (2024).

https://doi.org/10.1016/j.hazadv.2024.100478

Patel, S., Desai, R., Patel, B., Ali, D., Dawane, V., Gadhvi, K., Yadav, V.K., Choudhary, N., Sahoo, D. K. and Patel, A., Phytonanofabrication of iron oxide particles from the Acacia jacquemontii plant and their potential application for the removal of brilliant green and Congo red dye from wastewater, Front. Bioeng. Biotechnol., 11, 1319927 (2023).

https://doi.org/10.3389/fbioe.2023.1319927

Patil, N., Bholay, A., Kapadnis, B. and Gaikwad, V., Biodegradation of Model Azo Dye Methyl Red and other Textile Dyes by Isolate Bacillus circulans NPP1, J. Pure Appl. Microbiol., 10(4), 2793–2800 (2016).

https://doi.org/10.22207/JPAM.10.4.38

Perwez, M., Fatima, H., Arshad, M., Meena, V. K. and Ahmad, B., Magnetic iron oxide nanosorbents effective in dye removal, Int. J. Environ. Sci. Technol., 20(5), 5697–5714 (2023).

https://doi.org/10.1007/s13762-022-04003-3

Rafieizonooz, M., Khankhaje, E. and Rezania, S., Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete, J. Build. Eng., 49, 104040 (2022).

https://doi.org/10.1016/j.jobe.2022.104040

Rajendran, S., Wanale, S.G., Gacem, A., Yadav, V. K., Ahmed, I. A., Algethami, J. S., Kakodiya, S. D., Modi, T., Alsuhaibani, A. M., Yadav, K. K. and Cavalu, S., Nanostructured Iron Oxides: Structural, Optical, Magnetic, and Adsorption Characteristics for Cleaning Industrial Effluents, Crystals, 13(3), 472 (2023).

https://doi.org/10.3390/cryst13030472

Rather, M. Y. and Sundarapandian, S., Utilization of Eco‐friendly Copper Oxide Nanoparticles and Iron Oxide Nanorods in Dye Removal from Real Textile Industry Effluent, Part. Part. Syst. Charact., 41, 2300223 (2024).

https://doi.org/10.1002/ppsc.202300223

Sharma, B., Kumari, N., Mathur, S. and Sharma, V., Kinetics and Optimization of Azo Dye Decolorisation Using Green Synthesized Iron-Oxide Nanoparticles: A Pilot Scale Study, Int. J. Environ. Res., 16(4), 38 (2022).

https://doi.org/10.1007/s41742-022-00418-5

Singh, N. J., Wareppam, B., Kumar, A., Singh, K. P., Garg, V. K., Oliveira A. C. and Singh H. L., Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal, J. Mater. Res., 38, 1149–1161 (2023).

https://doi.org/10.1557/s43578-022-00859-w

Sun, X., Badachhape, A., Bhandari, P., Chin, J., Annapragada, A. and Tanifum, E., A dual target molecular magnetic resonance imaging probe for noninvasive profiling of pathologic alpha-synuclein and microgliosis in a mouse model of Parkinson’s disease, Front. Neurosci., 181, 428736 (2024).

https://doi.org/10.3389/fnins.2024.1428736

Sunjidmaa, D., Batdemberel, G. and Takibai, S., A Study of Ferrospheres in the Coal Fly Ash, Open J. Appl. Sci., 09(01), 10–16 (2019).

https://doi.org/10.4236/ojapps.2019.91002

Swathilakshmi, A. V., Abirami, S., Geethamala, G. V., Poonkothai, M., Sudhakar, C., Albasher, G., Alamri, O. and Alsultan, N., Phytonanofabrication of copper oxide mediated by Albizia amara and its photocatalytic efficacy, Mater. Lett., 314, 131911 (2022).

https://doi.org/10.1016/j.matlet.2022.131911

Tai, V. C., Che, H. X., Kong, X. Y., Ho, K. C. and Ng, W. M., Decoding iron oxide nanoparticles from design and development to real world application in water remediation, J. Ind. Eng. Chem., 12782–100 (2023).

https://doi.org/10.1016/j.jiec.2023.07.038

Twinkle., Tewatia, H., Kaushik, J., Sahu, A., Chaudhary, S.K. and Sonkar, S.K., Waste Iron Dust Derived Iron Oxide Nanoparticles for Efficient Adsorption of Multiple Azo Dyes, ACS Sustain. Resour. Manag., 1(2), 278–288 (2024).

https://doi.org/10.1021/acssusresmgt.3c00064

Valeev, D., Mikhailova, A. and Atmadzhidi, A., Kinetics of Iron Extraction from Coal Fly Ash by Hydrochloric Acid Leaching, Metals, 8(7), 533 (2018).

https://doi.org/10.3390/met8070533

Wang, L. K., Wang, M. H. S., Shammas, N. K. and Hahn, H. H., Physicochemical Treatment Consisting of Chemical Coagulation, Precipitation, Sedimentation, and Flotation, In: Wang L. K, Wang M. H. S., Hung Y. T., Integrated Natural Resources Research, Springer International Publishing, Cham, 22, 265–397 (2021).

https://doi.org/10.1007/978-3-030-61002-9_6

Yadav, V. K., Amari, A., Gacem, A., Elboughdiri, N., Eltayeb, L. B. and Fulekar, M. H., Treatment of Fly-Ash-Contaminated Wastewater Loaded with Heavy Metals by Using Fly-Ash-Synthesized Iron Oxide Nanoparticles, Water, 15(5), 908 (2023).

https://doi.org/10.3390/w15050908

Yadav, V. K. and Fulekar, M. H., Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste, Ceramics, 3(3), 384–420 (2020).

https://doi.org/10.3390/ceramics3030034

Yang, Q., Li, Y., Zhao, X., Zhang, J., Cheng, X. and Zhu, N., Recent advances of superparamagnetic iron oxide nanoparticles and its applications in neuroscience under external magnetic field, Appl. Nanosci., 13(8), 5489–5500 (2023).

https://doi.org/10.1007/s13204-023-02803-8

Zanata, L., Tofanello, A., Martinho, H. S., Souza, J. A. and Rosa, D. S., Iron oxide nanoparticles–cellulose: a comprehensive insight on nanoclusters formation, J. Mater. Sci., 57(1), 324–335 (2022).

https://doi.org/10.1007/s10853-021-06564-z

Contact Us

Powered by

Powered by OJS