Open Access

Unlocking the potential of Microbial Biomass for Carbon and Nitrogen Transformations in Forest and Desert Soils: Review

Parmar Ganesh, hemchandracharya north gujarat university Dr. Rajesh Chaudhari, School of Applied Sciences & Technology. Gujarat Technological University Ahmedabad, 382424, India. Modi Ashish , Hemchandracharya North Gujarat University, Patan, 384 265, India. Dr. Salehabanu Meman, R.R. Mehta College of Science & C.L. Parikh College of Commerce,385001 Palanpur Dr. Shreyas Bhatt sabhatt@ngu.ac.in
Hemchandracharya North Gujarat University, Patan, 384 265, India.


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 448-461

https://doi.org/10.13074/jent.2024.12.243933

PDF


Abstract

Microbial biomass plays an important role in nutrient transformation and the conservation of forests and desert soil. The main aim of the present investigation is to determine the effects of the dynamics of these transformations on the quality of the soil. Microbial biomass and their activities are remarkably influenced by several variables, Viz., temperature, soil moisture, heavy metals, microbial community composition, predation and grazing, and the texture of these soils. Microorganisms have played a significant role in the elemental and energy movements, and they are frequently regarded as the catalyst or driving force behind the breakdown processes. Microbial biomass to organic carbon ratio, in particular, may reflect the role of microorganisms in the availability of carbon. Soil microbial biomass carbon has been reported to be significantly greater in the top 0–30 cm depths compared to the lower depths. Several variables influencing the dynamics of soil microbial biomass are discussed in this review.

Full Text

Reference


Al-Mayahi, A., Menezes-Blackburn, D., Al-Ismaily, S., Al-Busaidi, H., Al-Siyabi, A., Al-Siyabi, B., Al-Saidi, S. and Al-Harrasi, N., Elemental sulfur effects on salt leaching, plant growth, nutrient uptake, and microbial diversity in an arid saline soil, J. Saudi. Soc. Agric. Sci., 23(3), 227–235(2024). https://doi.org/10.1016/j.jssas.2023.11.006

Alsharif, W., Saad, M. M. and Hirt, H., Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments, Front. Microbiol., 11, 16-66(2020). https://doi.org/10.3389/fmicb.2020.01666

Babur, E. and Dindaroglu, T., Seasonal Changes of Soil Organic Carbon and Microbial Biomass Carbon in Different Forest Ecosystems, IntechOpen, (2020). https://doi.org/10.5772/intechopen.90656

Badalucco, L., Gelsomino, A., Dell, O. S., Grego, S. and Nannipieri, P., Biochemical characterization of soil organic compounds extracted by 0.5 m K2SO4 before and after chloroform fumigation, Soil Biol Biochem., 24(6), 569–578(1992). https://doi.org/10.1016/0038-0717(92)90082-9

Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. and Šnajdr, J., Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content, Appl. Soil. Eco., 46(2), 177–182(2010). https://doi.org/10.1016/j.apsoil.2010.08.013

Bardgett, R. D. and Van, D. P. W. H., Belowground biodiversity and ecosystem functioning, Nat., 515(7528), 505–511(2014). https://doi.org/10.1038/nature13855

Bastida, F., Moreno, J. L., Hernández, T. and García, C., The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate, Appl. Soil. Ecol., 37(1–2), 53–62(2007). https://doi.org/10.1016/j.apsoil.2007.03.010

Basu, S. and Behera, N., The effect of tropical forest conversion on soil microbial biomass, Biol. Fertil. Soils, 16, 302–304(1993), https://doi.org/10.1007/BF00369310

Bauhus, J. and Bartsch, N., Mechanisms for carbon and nutrient release and retention in beech forest gaps,. In: Nilsson LO, Hüttl RF, Johansson UT (eds.) Nutrient Uptake and Cycling in Forest Ecosystems. Springer. Neth. Dordrecht., 579–584 (1995). https://doi.org/10.1007/978-94-011-0455-5_64

Berthrong, S. T., Yeager, C. M., Gallegos-Graves, L., Steven, B., Eichorst, S. A., Jackson, R. B. and Kuske, C. R., Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2, Appl. Environ. Microbiol., 80(10), 3103–3112(2014). https://doi.org/10.1128/AEM.04034-13

Blagodatskaya, Е. and Kuzyakov, Y., Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review, Biol. Fertil. Soils., 45(2), 115–131(2008). https://doi.org/10.1007/s00374-008-0334-y

Brookes, P. C., Landman, A., Pruden, G. and Jenkinson, D. S., Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil. Biol. Biochem., 17(6), 837–842(1985). https://doi.org/10.1016/0038-0717(85)90144-0

Broos, K., Macdonald, L. M., J. Warne, M. St., Heemsbergen, D. A., Barnes, M. B., Bell, M. and McLaughlin, M. J., Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field, Soil. Biol. Biochem., 39(10), 2693–2695(2007a). https://doi.org/10.1016/j.soilbio.2007.05.014

Broos, K., Michael, S. J. W., Diane, A. H., Daryl, S., Mary, B. B., Raymond, L. C. and Mike, J. M., Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils, Environmental Toxicology and Chemistry, 26(4), 583–590 (2007b). https://doi.org/10.1897/06-302R.1

Carter, M. R. and Rennie, D. A., Changes in soil quality under zero tillage farming systems: distribution of microbial biomass and mineralizable C and N potentials, Can. J. Soil Sci., 62, 587–597 (1982). https://doi.org/10.4141/cjss82-066

Carter, M. R. and Rennie, D. A., Crop Utilization Of Placed And Broadcast 15n-Urea Fertilizer Under Zero And Conventional Tillage, Can. J. Soil Sci., 64(4), 563-570 (1984). https://doi.org/10.4141/cjss84-057

Carter, M. R. and Rennie, D. A., Effects of tillage on deposition and utilization of 15N residual fertilizer, Soil Tillage Res., 9(1), 33-43 (1987). https://doi.org/10.1016/0167-1987(87)90049-3

Carter, M. R., Microbial biomass as an index for tillage-induced changes in soil biological properties, Soil Tillage Res., 7(1–2), 29-40 (1986). https://doi.org/10.1016/0167-1987(86)90005-X

Carter, M. R., Ninhydrin-reactive n released by the fumigation-extraction method as a measure of microbial biomass under field conditions, Soil Biol. Biochem., 23(2), 139-143 (1991). https://doi.org/10.1016/0038-0717(91)90126-5

Cochran, V. L., Elliott, L. F. and Lewis, C. E., Soil microbial biomass and enzyme activity in subarctic agricultural and forest soils, Biol. Fert. Soils., 7(4), (1989). https://doi.org/10.1007/BF00257821

Contin, M., Corcimaru, S., De, N. M. and Brookes, P. C., Temperature changes and the ATP concentration of the soil microbial biomass, Soil. Biol. Biochem., 32(8–9), 1219–1225(2000). https://doi.org/10.1016/S0038-0717(00)00038-9

Cowan, D. A., Cary, S. C., DiRuggiero, J., Eckardt, F., Ferrari, B., Hopkins, D. W., Lebre, P. H., Maggs, K. G., Pointing, S. B., Ramond, J. B., Tribbia, D. and Warren, R. K., Follow the Water. Microbial Water Acquisition in Desert Soils. Microorganisms., 11(7), 1670(2023). https://doi.org/10.3390/microorganisms11071670

Dalal, R. C., Strong W. M., Weston, E. J. and Geffney, J., Soil fertility decline and restoration of cropping lands in sub-tropical Queensland, Trop. Grasslands, 25, 173-180 (1991).

Das, S., Deb, S., Sahoo, S. S. and Sahoo, U. K., Soil microbial biomass carbon stock and its relation with climatic and other environmental factors in forest ecosystems: A review, Acta. Ecologica. Sin., 43(6), 933–945(2023). https://doi.org/10.1016/j.chnaes.2022.12.007

Diaz-Ravina, M., Acea, M. J. and Carballas, T., Seasonal changes in microbial biomass and nutrient flush in forest soils, Biol. Fertil. Soils., 19, 220–226(1995). https://doi.org/10.1007/BF00336163

Dixon, G. R. and Tilston, E. L. (eds)., Soil Microbiology and Sustainable Crop Production. Springer Netherlands, Dordrecht, (2010). https://doi.org/10.1007/978-90-481-9479-7

Doran, J. W., Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils, Biol. Fertil. Soils, 5, 68–75(1987). https://doi.org/10.1007/BF00264349

Fleige, H. and Baeumer, K., Effect of zero-tillage on organic carbon and total nitrogen content, and their distribution in different N-fractions in loessial soils, Agro-Ecosystems, 1, 19-29 (1974). https://doi.org/10.1016/0304-3746(74)90004-3

Fu, G., Shen, Z., Zhang, X. and Zhou, Y., Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau, Appl. Soil. Ecol., 61, 158–160(2012). https://doi.org/10.1016/j.apsoil.2012.05.002

Gallardo, A. and Schlesinger, W. H., Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest, Soil. Biol. Biochem., 26(10), 1409–1415(1994). https://doi.org/10.1016/0038-0717(94)90225-9

Gao, Y., Liang, A., Zhang, Y., McLaughlin, N., Zhang, S., Chen, X., Zheng, H. and Fan, R., Dynamics of Microbial Biomass, Nitrogen Mineralization and Crop Uptake in Response to Placement of Maize Residue Returned to Chinese Mollisols over the Maize Growing Season, Atmos., 12(9), 1166(2021). https://doi.org/10.3390/atmos12091166

Gautam, T. P. and Mandal, T. N., Soil Characteristics in Moist Tropical Forest of Sunsari District, Nepal, Nepal. J. Sci. Technol., 14(1), 35–40(2013). https://doi.org/10.3126/njst.v14i1.8876

Geisseler, D. and Scow, K. M., Long-term effects of mineral fertilizers on soil microorganisms – A review, Soil. Biol. Biochem., 75, 54–63(2014). https://doi.org/10.1016/j.soilbio.2014.03.023

Granatstein, D. M., Bezdicek, D. F., Cochran, V. L. Elliott, L. E. and Hammel, J., Long-term tillage and rotation effects on soil microbial biomass, carbon and nitrogen, Biol. Fertil. Soils, 5, 265–270 (1987). https://doi.org/10.1007/BF00256912

Haines, P. J. and Uren, N. C., Effects of conservation tillage farming on soil microbial biomass, organic matter and earthworm populations, in north-eastern Victoria, Australian Journal of Experimental Agriculture 30(3), 365-371(1990). https://doi.org/10.1071/EA9900365

Hardoim, P. R., Van O. L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M. and Sessitsch, A., The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes, Microbiol. Mol. Biol. Rev., 79(3), 293–320(2015). https://doi.org/10.1128/MMBR.00050-14

Harris, J. A. and Steer, J., Modern Methods for Estimating Soil Microbial Biomass and Diversity: An Integrated Approach, The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions, 19, 29–48 (2003).

Hassink, J., Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization, Soil Biol. Biochem., 27(8), 1099-1108 (1995). https://doi.org/10.1016/0038-0717(95)00027-C

Haynes, R. J. and Knight, T. L., Comparison of soil chemical properties, enzyme activities, levels of biomass N and aggregate stability in the soil profile under conventional and no-tillage in Canterbury, New Zealand, Soil Tillage Res., 14(3), 197-208 (1989). https://doi.org/10.1016/0167-1987(89)90008-1

Holmes, W. E. and Donald, R. Z., Soil Microbial Biomass Dynamics and Net Nitrogen Mineralization in Northern Hardwood Ecosystems, Soil Sci. Soc. Am. J., 58(1), 238–43 (1994).

Hossain, A., Raison, R. J. and Khanna, P. K., Effects of Fertilizer Application and Fire Regime on Soil Microbial Biomass Carbon and Nitrogen, and Nitrogen Mineralization in an Australian Subalpine Eucalypt Forest, Biol. Fertil. Soils, 19, 246–52 (1995). https://doi.org/10.1007/BF00336167

Islam, M. R., Singh, B. and Dijkstra, F. A., Stabilisation of soil organic matter: interactions between clay and microbes, Biogeochem., 160(2), 145–158(2022). https://doi.org/10.1007/s10533-022-00956-2

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. and Kopriva, S., The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions, Front. Plant. Sci., 8, 16-17(2017). https://doi.org/10.3389/fpls.2017.01617

Joergensen, R. G., Wu, J. and Brookes, P. C., Measuring soil microbial biomass using an automated procedure, Soil. Biol. Biochem., 43(5), 873–876(2011). https://doi.org/10.1016/j.soilbio.2010.09.024

John W. Doran, Soil Microbial and Biochemical Changes Associated with Reduced Tillage†, Soil Science Society of America Journal, 44(4), 765-771(1980), https://doi.org/10.2136/sssaj1980.03615995004400040022x

Kemmitt, S., Wright, D., Goulding, K. and Jones, D., pH regulation of carbon and nitrogen dynamics in two agricultural soils, Soil. Biol. Biochem., 38(5), 898–911(2006). https://doi.org/10.1016/j.soilbio.2005.08.006

Lu, X., Gilliam, F. S., Guo, J., Hou, E. and Kuang, Y., Decrease in soil pH has greater effects than increase in above‐ground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment, J. Appl. Ecol., 59(3), 768–778(2022). https://doi.org/10.1111/1365-2664.14091

Luizao, R., Torben, A. B. C. C. and Thomas, R., Seasonal Variation of Soil Microbial Biomass—the Effects of Clearfelling a Tropical Rainforest and Establishment of Pasture in the Central Amazon, Soil Biol. Biochem., 24(8), 805–13 (1992). https://doi.org/10.1016/0038-0717(92)90256-W

Lynch, J. M. and Panting, L. M., Cultivation and the soil biomass, Soil Biol. Biochem., 12(1), 29-33 (1980). https://doi.org/10.1016/0038-0717(80)90099-1

Lynch, J. M. and Panting, L. M., Effects of season, cultivation and nitrogen fertiliser on the size of the soil microbial biomass, J. Sci. Food Agric., 33(3), 213-308 (1982). https://doi.org/10.1002/jsfa.2740330308

Maithani, K., Tripathi, R. S., Arunachalam, A. and Pandey, H. N., Seasonal Dynamics of Microbial Biomass C, N and P during Regrowth of a Disturbed Subtropical Humid Forest in North-East India, Applied Soil Ecology, 4(1); 31–37 (1996). https://doi.org/10.1016/0929-1393(96)00101-1

Mandal, T. N., Soil microbial biomass in cropland and forest ecosystem in eastern Nepal, Nepalese J. Biosci., 3(1), 69–74(2013). https://doi.org/10.3126/njbs.v3i1.41449

Maxwell, R. A. and David, C. C., Seasonal Dynamics of Nematode and Microbial Biomass in Soils of Riparian-Zone Forests of the Southern Appalachians, Soil Bid. Biodwm., 27(1), 79-84 (1995). https://doi.org/10.1016/0038-0717(94)00136-O

McCrackin, M. L., Harms, T. K., Grimm, N. B., Hall, S. J. and Kaye, J. P., Responses of soil microorganisms to resource availability in urban, desert soils, Biogeochem., 87(2), 143–155(2008). https://doi.org/10.1007/s10533-007-9173-4

McGILL, W. B., Cannon, K. R., Robertson, J. A. and Cook, F. D., dynamics of soil microbial biomass and water-soluble organic c in breton l after 50 years of cropping to two rotations, can J. Soil, sci., 66(1), 1–19(1986a). https://doi.org/10.4141/cjss86-001

McGonigle, T. and Turner, W., Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon, Agric., 7(7), 57(2017). https://doi.org/10.3390/agriculture7070057

McSherry, M. E. and Ritchie, M. E., Effects of grazing on grassland soil carbon: a global review, Global. Change. Biol., 19(5), 1347–1357(2013). https://doi.org/10.1111/gcb.12144

Meharg, A. A. and Killham, K., Carbon distribution within the plant and rhizosphere for Lolium perenne subjected to anaerobic soil conditions, Soil Biol. Biochem., 22(5), 643-647 (1990). https://doi.org/10.1016/0038-0717(90)90010-W

Mori, T., Wang, S., Wang, C., Mo, J. and Zhang, W., Is microbial biomass measurement by the chloroform fumigation extraction method biased by experimental addition of N and P?, Forest., 14(5), 408–412(2021). https://doi.org/10.3832/ifor3374-014

Nacke, H., Engelhaupt, M., Brady, S., Fischer, C., Tautzt, J. and Daniel, R., Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes, Biotechnol. Lett., 34(4), 663–675(2012). https://doi.org/10.1007/s10529-011-0830-2

Nyamadzawo, G., Nyamangara, J., Nyamugafata, P. and Muzulu, A., Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe, Soil. Tillage. Res., 102(1), 151–157(2009). https://doi.org/10.1016/j.still.2008.08.007

Philippot, L., Raaijmakers, J. M., Lemanceau, P. and Van, De Putten, W. H., Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 11(11), 789–799(2013). https://doi.org/10.1038/nrmicro3109

Pietikäinen, J., and Fritze, H., Microbial biomass and activity in the humus layer following burning: short-term effects of two different fires, Can. J. For. Res., 23(7), 1275–1285(1993). https://doi.org/10.1139/x93-163

Qu, R., Liu, G., Yue, M., Wang, G., Peng, C., Wang, K. and Gao, X., Soil temperature, microbial biomass and enzyme activity are the critical factors affecting soil respiration in different soil layers in Ziwuling Mountains, China, Front. Microbiol., 14, 110-5723(2023). https://doi.org/10.3389/fmicb.2023.1105723

Raghubanshi, A. S., Dynamics of Soil Biomass C, N, and P in a Dry Tropical Forest in India, Biology and Fertility of Soils, 12, 55–59 (1991). https://doi.org/10.1007/BF00369388

Reed, S. C., Cleveland, C. C., and Townsend, A. R., Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective, Annu. Rev. Evol. Syst., 42(1), 489–512(2011). https://doi.org/10.1146/annurev-ecolsys-102710-145034

Saffigna, P. G., Powlson, D. S., Brookes, P. C. and Thomas, G. A., Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an australian vertisol, Soil Biol. Biochem. , 21(6), 759-765 (1989). https://doi.org/10.1016/0038-0717(89)90167-3

Saffigna, P. G., Powlson, D. S., Brookes, P. C., Thomas, G. A., Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an australian vertisol, Soil Biol. Biochem., 21(6),759-765 (1989). https://doi.org/10.1016/0038-0717(89)90167-3

Sanjoy, K., Chaudhuri, S. and Maiti, S. K., Soil Microbial Biomass Carbon in Natural and Degraded Soil-A Review, Environ. Eco., 29(3), 1689–95 (2011).

Šantrůčková, H., Microbial Biomass, Activity and Soil Respiration in Relation to Secondary Succession, Pedobiologia 36(6), 341-350 (1992). http://dx.doi.org/10.1016/S0031-4056(24)00762-5

Sarig, S. and Steinberger, Y., Microbial biomass response to seasonal fluctuation in soil salinity under the canopy of desert halophytes, Soil. Biol. Biochem., 26(10), 1405–1408(1994). https://doi.org/10.1016/0038-0717(94)90224-0

Scholle, G., Wolters, V. and Joergensen, R. G., Effects of mesofauna exclusion on the microbial biomass in two moder profiles, Biol. Fertil. Soils., 12(4), 253–260(1992). https://doi.org/10.1007/BF00336040

Singh, A. N., Raghubanshi, A. S. and Singh, J. S., Impact of native tree plantations on mine spoil in a dry tropical environment, For. Ecol. Manage., 187(1), 49–60(2004). https://doi.org/10.1016/S0378-1127(03)00309-8

Singh, J. S., Raghubanshi, A. S., Singh, R. S. and Srivastava, S. C., Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna, Nat., 338(6215), 499–500(1989). https://doi.org/10.1038/338499a0

Sinha, S., Masto, R. E., Ram, L. C., Selvi, V. A., Srivastava, N. K., Tripathi, R. C. and George, J., Rhizosphere soil microbial index of tree species in a coal mining ecosystem, Soil. Biol. Biochem., 41(9), 1824–1832(2009). https://doi.org/10.1016/j.soilbio.2008.11.022

Siu and Ralph G. H., Microbial Decomposition of Cellulose (1951).

Skujins, J. J. and McLaren, A. D., Enzyme Reaction Rates at Limited Water Activities, Sci., 158(3808), 1569–1570(1967). https://doi.org/10.1126/science.158.3808.1569

Šourková, M., Frouz, J., Fettweis, U., Bens, O., Hüttl, R. F. and Šantrůčková, H., Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany), Geoderma., 129(1–2), 73–80(2005). https://doi.org/10.1016/j.geoderma.2004.12.032

Srivastava, S. C. and Singh, J. S., Effect of cultivation on microbial carbon and nitrogen in dry tropical forest soil, Biol. Fertil. Soils, 8, 343–348 (1989). https://doi.org/10.1007/BF00263167

Srivastava, S. C. and Singh, J. S., Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux, Soil Biol. Biochem., 23(2), 117-124 (1991). https://doi.org/10.1016/0038-0717(91)90122-Z

Stockdale, E. A. and Brookes, P. C., Detection and quantification of the soil microbial biomass – impacts on the management of agricultural soils, J. Agric. Sci., 144(4), 285–302(2006). https://doi.org/10.1017/S0021859606006228

Sunish, K. S., Thazeem, B., Microbial Biomass, In: Thomas, S., Hosur, M., Pasquini, D. and Jose Chirayil, C., (eds.) Handbook of Biomass. Springer Nature Singapore, Singapore, 1–24 (2023)., https://doi.org/10.1007/978-981-19-6772-6_6-1

Tripathi, N. and Singh, R. S., Cultivation impacts nitrogen transformation in Indian forest ecosystems, Nutr. Cycl. Agroecosyst., 77(3), 233–243(2007). https://doi.org/10.1007/s10705-006-9061-7

Vance, E. D., Brookes, P. C. and Jenkinson, D. S., An extraction method for measuring soil microbial biomass C, Soil. Biol. Biochem., 19(6), 703–707(1987). https://doi.org/10.1016/0038-0717(87)90052-6

VanInsberghe, D., Maas, K. R., Cardenas, E., Strachan, C. R., Hallam, S. J. and Mohn, W. W., Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils, 9(11), 2435–2441(2015). https://doi.org/10.1038/ismej.2015.54

Verhoef, H. A. and Brussaard, L., Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil. Anim., Biogeochem., 11(3), 175(1990). https://doi.org/10.1007/BF00004496

von L. M., Zelles, L., Scheunert, I. and Ottow, J. C. G., Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N in a spruce (Picea abies L.), forest soil, 13, 130–134 (1992). https://doi.org/10.1007/BF00336267

Wang, H., Nagy, J. D., Gilg, O. and Kuang, Y., The roles of predator maturation delay and functional response in determining the periodicity of predator–prey cycles, Math. Biosci., 221(1), 1–10(2009). https://doi.org/10.1016/j.mbs.2009.06.004

Wardle, D. A., A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil, Biol. Rev., 67(3), 321–358(1992). https://doi.org/10.1111/j.1469-185X.1992.tb00728.x

Wardle, D. A., Controls of temporal variability of the soil microbial biomass: A global-scale synthesis, Soil. Biol. Biochem., 30(13), 1627–1637(1998). https://doi.org/10.1016/S0038-0717(97)00201-0

Williamson, R. F., Reay, M. and Sgouridis, F., Permaculture Management of Arable Soil Increases Soil Microbial Abundance, Nutrients, and Carbon Stocks Compared to Conventional Agriculture, Agron., 14(7), 1446(2024). https://doi.org/10.3390/agronomy14071446

Wright, C. J. and Coleman, D. C., Responses of soil microbial biomass, nematode trophic groups, N-mineralization, and litter decomposition to disturbance events in the southern Appalachians, Soil. Biol. Biochem., 34(1), 13–25(2002). https://doi.org/10.1016/S0038-0717(01)00128-6

Wu, X., Lu, J., Du, M., Xu, X., Beiyuan, J., Sarkar, B., Bolan, N., Xu, W., Xu, S., Chen, X., Wu, F. and Wang, H., Particulate plastics-plant interaction in soil and its implications: A review, Sci. Total. Environ., 792, 148-337(2021). https://doi.org/10.1016/j.scitotenv.2021.148337

Xu, X., Thornton, P. E. and Post, W. M., A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Global soil microbial biomass C, N and P, Global. Ecol. Biogeogr., 22(6), 737–749(2013). https://doi.org/10.1111/geb.12029

Yavitt, Joseph, B., Wieder, R. K. and Wright, S. J., Soil nutrient dynamics in response to irrigation of a Panamanian tropical moist forest, Biogeochem., 19(1), 1-25 (1993). https://doi.org/10.1007/BF00000572

Zeng, K., Huang, X., Guo, J., Dai, C., He, C., Chen, H. and Xin, G., Microbial-driven mechanisms for the effects of heavy metals on soil organic carbon storage: A global analysis, Environ. Int., 184, 108-467(2024). https://doi.org/10.1016/j.envint.2024.108467

Zhang, B., Xu, C., Zhang, Z., Hu, C., He, Y., Huang, K., Pang, Q. and Hu, G., Response of soil organic carbon and its fractions to natural vegetation restoration in a tropical karst area, southwest China, Front. For. Glob. Change., 6, 117-262(2023). https://doi.org/10.3389/ffgc.2023.1172062

Zhang, H. and Chu, L. M., Plant community structure, soil properties and microbial characteristics in revegetated quarries, Ecol. Eng., 37(8), 1104–1111(2011). https://doi.org/10.1016/j.ecoleng.2010.05.010

Contact Us

Powered by

Powered by OJS