Open Access

Giloy Mediated Copper Nanoparticles: Their Bioactive Components, Medicinal Properties, and Species-Specific Antibacterial Efficacy

Kundan Kumar, Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, C.G.-493225, India Ravi Kant Singh, Amity Institute of Biotechnology, Amity University, Noida Pankaj Kumar Tyagi, pktgenetics@gmail.com
Noida Institute of Engineering and Technology, Greater Noida
Pankaj Kumar Tyagi, Noida Institute of Engineering and Technology Varaprasad Kolla, Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, C.G.-493225, India Dilip Gore Sai Biosystems Pvt. Ltd., Nagpur


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 438-447

https://doi.org/10.13074/jent.2024.12.243918

PDF


Abstract

This study used Tinospora cordifolia (Giloy), rich in bioactive compounds such as berberine and giloin, to synthesize copper nanoparticles (CuNPs). The CuNPs were characterized by UV-Vis spectrophotometry, showing a prominent absorption peak at 320 nm with an absorbance of 0.971. FTIR analysis confirmed stabilization by polyphenols and proteins, while X-ray diffraction (XRD) revealed 18 crystalline peaks. Scanning electron microscopy (SEM) showed agglomerated particles with sizes below 100 nm. The antibacterial efficacy of the CuNPs was tested against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. K. pneumoniae exhibited significant sensitivity at a minimum inhibitory concentration of 125 µg/ml, while other strains showed resistance. These findings suggest that T. cordifolia-mediated CuNPs could serve as targeted antibacterial agents, especially for multidrug-resistant K. pneumoniae, offering eco-friendly and sustainable applications in infection control and biomedical fields.

Full Text

Reference


Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., & Tahoon, M. A. (2023). Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. In Molecules (Vol. 28, Issue 1). MDPI. https://doi.org/10.3390/molecules28010463

Amjad, R., Mubeen, B., Ali, S. S., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Rasool, R., Ullah, I., Nadeem, M. S., & Kazmi, I. (2021). Green synthesis and characterization of copper nanoparticles using fortunella margarita leaves. Polymers, 13(24). https://doi.org/10.3390/polym13244364

Arunachalam, K., Yang, X., & San, T. T. (2022). Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. Journal of Ethnopharmacology, 283, 114540. https://doi.org/https://doi.org/10.1016/j.jep.2021.114540

Avakh, A., Grant, G. D., Cheesman, M. J., Kalkundri, T., & Hall, S. (2023). The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. In Antibiotics (Vol. 12, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antibiotics12081304

Aziz, N. M. A., Goda, D. A., Abdel-Meguid, D. I., EL-Sharouny, E. E., & Soliman, N. A. (2024). A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents. Microbial Cell Factories, 23(1). https://doi.org/10.1186/s12934-024-02422-0

Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. In Journal of Nanobiotechnology (Vol. 19, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12951-021-00834-3

Calvo-De La Rosa, J., & Segarra Rubí, M. (2020). Influence of the Synthesis Route in Obtaining the Cubic or Tetragonal Copper Ferrite Phases. Inorganic Chemistry, 59(13), 8775–8788. https://doi.org/10.1021/acs.inorgchem.0c00416

Chowdhury, P. (2021). In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 39(17), 6792–6809. https://doi.org/10.1080/07391102.2020.1803968

Das, P. E., Abu‐Yousef, I. A., Majdalawieh, A. F., Narasimhan, S., & Poltronieri, P. (2020). Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules, 25(3). https://doi.org/10.3390/molecules25030555

Dayana, P. N., Abel, M. J., Inbaraj, P. F. H., Sivaranjani, S., Thiruneelakandan, R., & prince, J. J. (2022). Zirconium Doped Copper Ferrite (CuFe2O4) Nanoparticles for the Enhancement of Visible Light-Responsive Photocatalytic Degradation of Rose Bengal and Indigo Carmine Dyes. Journal of Cluster Science, 33(4), 1739–1749. https://doi.org/10.1007/s10876-021-02094-5

Jassim, H. A., Khadhim, A., & Al-Amiery, A. A. (2016). Photo Catalytic Degradation of Methylene Blue by Using CuO Nanoparticles. International Journal of Computation and Applied Sciences, 1(3), 1–4. https://doi.org/10.24842/1611/0011

Kiflom Gebremedhn, Mebrahtu Hagos Kahsay, & Muluken Aklilu. (2019). Green Synthesis of CuO Nanoparticles Using Leaf Extract of Catha edulis and Its Antibacterial Activity. Journal of Pharmacy and Pharmacology, 7(6). https://doi.org/10.17265/2328-2150/2019.06.007

Kim, B. S., & Song, J. Y. (2009). 28 Biological Synthesis of Metal Nanoparticles. Biocatal. Agric. Biotechnol., 28, 399-407 DOI:10.1201/9781420077070.ch28

Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M., & Al-Najar, B. (2018). Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. Journal of Physics and Chemistry of Solids, 115, 162–171. https://doi.org/10.1016/j.jpcs.2017.12.024

Kumar, A., Dhorajiya, U., & Lakhani, S. J. (2024). Anti Microbial Resistance pattern of Klebsiella species in Tertiary care Hospital. Int. Arch. Integr. Med, 11(4), 1–8. https://doi.org/10.5281/zenodo.11077259

Kumar, P. P. N. V., Shameem, U., Kollu, P., Kalyani, R. L., & Pammi, S. V. N. (2015). Green Synthesis of Copper Oxide Nanoparticles Using Aloe vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens. BioNanoScience, 5(3), 135–139. https://doi.org/10.1007/s12668-015-0171-z

Luo, F., Chen, Z., Megharaj, M., & Naidu, R. (2014). Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 4(96), 53467–53474. https://doi.org/10.1039/c4ra08808e

Manikandan, D. B., Arumugam, M., Veeran, S., Sridhar, A., Krishnasamy Sekar, R., Perumalsamy, B., & Ramasamy, T. (2021). Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. Environmental Science and Pollution Research, 28(26), 33927–33941. https://doi.org/10.1007/s11356-020-12108-w

Manikandan, V., Vanitha, A., Ranjith Kumar, E., & Chandrasekaran, J. (2017). Effect of In substitution on structural, dielectric and magnetic properties of CuFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 432, 477–483. https://doi.org/10.1016/j.jmmm.2017.02.030

Manjula, N. G., Sarma, G., Shilpa, B. M., & Suresh Kumar, K. (2022). Environmental applications of green engineered copper nanoparticles. In Phytonanotechnology (pp. 255–276). Springer. DOI:10.1007/978-981-19-4811-4_12

Mittal, D., Saini, R. V, Thakur, R., Pal, S., Das, J., Siwal, S. S., & Saini, A. K. (2022). Green Synthesized Nanoparticles for Sustainable Agriculture. In Microbes in Agri-Forestry Biotechnology (pp. 305–318). DOI:10.1201/9781003110477-14

Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. In Journal of Nanoparticle Research (Vol. 10, Issue 3, pp. 507–517). https://doi.org/10.1007/s11051-007-9275-x

Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Applied Biochemistry and Biotechnology, 173(1), 318–331. https://doi.org/10.1007/s12010-014-0843-0

Patil, R. S., Kokate, M. R., & Kolekar, S. S. (2012). Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 91, 234–238. https://doi.org/10.1016/j.saa.2012.02.009

Raeisi, M., Alijani, H. Q., Peydayesh, M., Khatami, M., Bagheri Baravati, F., Borhani, F., Šlouf, M., & Soltaninezhad, S. (2021). Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess and Biosystems Engineering, 44(7), 1423–1432. https://doi.org/10.1007/s00449-021-02518-6

Rengasamy, M., Anbalagan, K., Kodhaiyolii, S., & Pugalenthi, V. (2016). Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil. RSC Advances, 6(11), 9261–9269. https://doi.org/10.1039/c5ra15186d

Saha, S., & Ghosh, S. (2012). Tinospora cordifolia: One plant, many roles. Ancient Science of Life, 31(4), 151. doi: 10.4103/0257-7941.107344

Salah, I., Parkin, I. P., & Allan, E. (2021). Copper as an antimicrobial agent: Recent advances. In RSC Advances (Vol. 11, Issue 30, pp. 18179–18186). Royal Society of Chemistry. https://doi.org/10.1039/d1ra02149d

Sarkar, J., Chakraborty, N., Chatterjee, A., Bhattacharjee, A., Dasgupta, D., & Acharya, K. (2020). Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials, 10(2). https://doi.org/10.3390/nano10020312

Sathiyavimal, S., Vasantharaj, S., Bharathi, D., Saravanan, M., Manikandan, E., Kumar, S. S., & Pugazhendhi, A. (2018). Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. Journal of Photochemistry and Photobiology B: Biology, 188, 126–134. https://doi.org/10.1016/j.jphotobiol.2018.09.014

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502. https://doi.org/10.1016/j.jcis.2004.03.003

Stephen, J., Salam, F., Lekshmi, M., Kumar, S. H., & Varela, M. F. (2023). The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. In Antibiotics (Vol. 12, Issue 2). MDPI. https://doi.org/10.3390/antibiotics12020343

Tyagi, P. K., Sarsar, V., & Ahuja, A. (2012). Synthesis of Metal Nanoparticals: A Biological Prospective for Analysis. 2(4). https://www.researchgate.net/publication/235903935

Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 61(6), 1413–1418. https://doi.org/10.1016/j.matlet.2006.07.042

Contact Us

Powered by

Powered by OJS