Giloy-mediated Copper Nanoparticles: Their Bioactive Components, Medicinal Properties, and Species-Specific Antibacterial Efficacy
J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 461-468
Abstract
In this study, Tinospora cordifolia (Giloy), rich in bioactive compounds, such as berberine and giloin, was used to synthesize copper nanoparticles (CuNPs). The UV-Vis spectrum of the nanoparticles showed a prominent absorption band at 320 nm. The FTIR analysis confirmed stabilization by polyphenols and proteins, while X-ray diffraction (XRD) revealed 18 crystalline peaks. Scanning electron microscopy (SEM) showed agglomerated particles, with individual sizes below 100 nm. The antibacterial efficacy of the CuNPs was tested against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. A significant sensitivity at a minimum inhibitory concentration of 125 µg/mL was shown by K. pneumoniae, while other strains showed resistance. These findings suggest that Giloy-mediated CuNPs could serve as targeted antibacterial agents, especially for multidrug-resistant K. pneumoniae, offering eco-friendly and sustainable applications in infection control and biomedical fields.
Full Text
Reference
Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., & Tahoon, M. A., Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives, Molecules, 28(1), (2023).
https://doi.org/10.3390/molecules28010463
Amjad, R., Mubeen, B., Ali, S. S., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Rasool, R., Ullah, I., Nadeem, M. S. and Kazmi, I., Green synthesis and characterization of copper nanoparticles using fortunella margarita leaves, Polym., 13(24), 4364(2021).
https://doi.org/10.3390/polym13244364
Arunachalam, K., Yang, X. and San, T. T., Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases, J. Ethnopharmacol., 283, 114540(2022).
https://doi.org/10.1016/j.jep.2021.114540
Avakh, A., Grant, G. D., Cheesman, M. J., Kalkundri, T. and Hall, S., The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy, Antibiot. Multi., Digital Publ. Inst., 12(8), 1304(2023).
https://doi.org/10.3390/antibiotics12081304
Aziz, N. M. A., Goda, D. A., Abdel-Meguid, D. I., EL-Sharouny, E. E. and Soliman, N. A. (2024). A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents, Microb. Cell Fact., 23(1), 156 (2024).
https://doi.org/10.1186/s12934-024-02422-0
Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J. and Ahmadian, G., Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector, In J. Nanobiotechnol. Bio. Med. Central Ltd., 19(1), (2021).
https://doi.org/10.1186/s12951-021-00834-3
Calvo-De La Rosa, J. and Segarra Rubí, M., Influence of the Synthesis Route in Obtaining the Cubic or Tetragonal Copper Ferrite Phases, Inorg. Chem., 59(13), 8775–8788(2020).
https://doi.org/10.1021/acs.inorgchem.0c00416
Chowdhury, P., In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach, J. Biomol. Struct. Dyn., 39(17), 6792–6809(2021).
https://doi.org/10.1080/07391102.2020.1803968
Das, P. E., Abu‐Yousef, I. A., Majdalawieh, A. F., Narasimhan, S. and Poltronieri, P., Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities, Mol., 25(3), 555(2020).
https://doi.org/10.3390/molecules25030555
Dayana, P. N., Abel, M. J., Inbaraj, P. F. H., Sivaranjani, S., Thiruneelakandan, R. and prince, J. J., Zirconium Doped Copper Ferrite (CuFe2O4) Nanoparticles for the Enhancement of Visible Light-Responsive Photocatalytic Degradation of Rose Bengal and Indigo Carmine Dyes, J. Cluster Sci., 33(4), 1739–1749(2022).
https://doi.org/10.1007/s10876-021-02094-5
Jassim, H. A., Khadhim, A. and Al-Amiery, A. A., Photo Catalytic Degradation of Methylene Blue by Using CuO Nanoparticles, Int. J. Comput. Appl. Sci., 1(3), 1–4(2016).
https://doi.org/10.24842/1611/0011
Kiflom Gebremedhn, Mebrahtu Hagos Kahsay, and Muluken Aklilu.. Green Synthesis of CuO Nanoparticles Using Leaf Extract of Catha edulis and Its Antibacterial Activity, J. Pharm. Pharmacol., 7(6), 1-16(2019).
https://doi.org/10.17265/2328-2150/2019.06.007
Kim, B. S. and Song, J. Y., 28 Biol. Synth. Met. Nanopart., Biocatal. Agric. Biotechnol., 28, 399-407(2009).
https://doi.org/10.1201/9781420077070.ch28
Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M. and Al-Najar, B., Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies, J. Phy. Chem. Solids, 115, 162–171(2018).
https://doi.org/10.1016/j.jpcs.2017.12.024
Kumar, A., Dhorajiya, U. and Lakhani, S. J., Anti Microbial Resistance pattern of Klebsiella species in Tertiary care Hospital, Int. Arch. Integr. Med., 11(4), 1–8(2024).
https://doi.org/10.5281/zenodo.11077259
Kumar, P. P. N. V., Shameem, U., Kollu, P., Kalyani, R. L. and Pammi, S. V. N., Green Synthesis of Copper Oxide Nanoparticles Using Aloe vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens, Bio. Nano. Sci., 5(3), 135–139(2015).
https://doi.org/10.1007/s12668-015-0171-z
Luo, F., Chen, Z., Megharaj, M. and Naidu, R., Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles, R. Soc. Chem. Adv., 4(96), 53467–53474(2014).
https://doi.org/10.1039/c4ra08808e
Manikandan, D. B., Arumugam, M., Veeran, S., Sridhar, A., Krishnasamy Sekar, R., Perumalsamy, B. and Ramasamy, T., Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities, Environ. Sci. Pollut. Res., 28(26), 33927–33941(2021).
https://doi.org/10.1007/s11356-020-12108-w
Manikandan, V., Vanitha, A., Ranjith Kumar, E. and Chandrasekaran, J., Effect of In substitution on structural, dielectric and magnetic properties of CuFe2O4 nanoparticles, J. Magn. Magn. Mater., 432, 477–483(2017).
https://doi.org/10.1016/j.jmmm.2017.02.030
Manjula, N. G., Sarma, G., Shilpa, B. M. and Suresh Kumar, K., Environmental applications of green engineered copper nanoparticles, Phytonanotechnology, Springer, 255–276(2022).
https://doi.org/10.1007/978-981-19-4811-4_12
Mittal, D., Saini, R. V, Thakur, R., Pal, S., Das, J., Siwal, S. S. and Saini, A. K., Green Synthesized Nanoparticles for Sustainable Agriculture. In Microbes Agri-Forestry Biotechnol., 305–318(2022).
https://doi.org/10.1201/9781003110477-14
Mohanpuria, P., Rana, N. K. and Yadav, S. K., Biosynthesis of nanoparticles: Technological concepts and future applications, J. Nanopart. Res. 10(3), 507–517(2008).
https://doi.org/10.1007/s11051-007-9275-x
Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., and Pugalenthi, V., Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum, Appl. Biochem. Biotechnol., 173(1), 318–331(2014).
https://doi.org/10.1007/s12010-014-0843-0
Patil, R. S., Kokate, M. R. and Kolekar, S. S., Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity, Spectrochim. Acta Part Mol. Biomol. Spectrosc., 91, 234–238(2012).
https://doi.org/10.1016/j.saa.2012.02.009
Raeisi, M., Alijani, H. Q., Peydayesh, M., Khatami, M., Bagheri Baravati, F., Borhani, F., Šlouf, M., & Soltaninezhad, S., Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity, Bioprocess and Biosystems Engineering, 44(7), 1423–1432 (2021).
https://doi.org/10.1007/s00449-021-02518-6
Rengasamy, M., Anbalagan, K., Kodhaiyolii, S., & Pugalenthi, V. (2016). Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil, RSC Advances, 6(11), 9261–9269.
https://doi.org/10.1039/c5ra15186d
Saha, S. and Ghosh, S., Tinospora cordifolia: One plant, many roles. Ancient Science of Life, 31(4), 151 (2012).
https://doi.org/10.4103/0257-7941.107344
Salah, I., Parkin, I. P. and Allan, E. Copper as an antimicrobial agent: Recent advances, RSC Advances, 11(30), 18179–18186 (2021).
https://doi.org/10.1039/d1ra02149d
Sarkar, J., Chakraborty, N., Chatterjee, A., Bhattacharjee, A., Dasgupta, D. and Acharya, K., Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris, Nanomaterials, 10(2), 312 (2020).
https://doi.org/10.3390/nano10020312
Sathiyavimal, S., Vasantharaj, S., Bharathi, D., Saravanan, M., Manikandan, E., Kumar, S. S. and Pugazhendhi, A., Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria, J. Photochem. Photobiol. Biol., 188, 126–134(2018).
https://doi.org/10.1016/j.jphotobiol.2018.09.014
Shankar, S. S., Rai, A., Ahmad, A. and Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci., 275(2), 496–502(2004).
https://doi.org/10.1016/j.jcis.2004.03.003
Stephen, J., Salam, F., Lekshmi, M., Kumar, S. H., & Varela, M. F., The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus,. Antibiot., 12(2), 343(2023).
https://doi.org/10.3390/antibiotics12020343
Tyagi, P. K., Sarsar, V. and Ahuja, A., Synthesis of Metal Nanoparticals: A Biological Prospective for Analysis, Int. J. Pharm. Innovations, 2(4), 48-60(2012).
Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H., Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, Mater. Lett., 61(6), 1413–1418(2007).