Open Access

Green Solvent-mediated Solution Combustion Synthesis of Photocatalytic Active Copper-doped Zinc Oxide Nanoparticles and their Antimicrobial Activity Study

P. Vinisha Valsaraj, vinipunep@gmail.com
PG and Research Department of Chemistry, Sree Narayana College, Kannur, Kannur University, KL, India
P. Ashna, Department of Physics, Sree Narayana College, Kannur, Kannur University, KL, India Anagha Rajan, Department of Physics, Sree Narayana College, Kannur, Kannur University, KL, India Sreshma Rajan Department of Physics, Sree Narayana College, Kannur, Kannur University, KL, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 36-46

https://doi.org/10.13074/jent.2024.12.243915

PDF


Abstract

Environmental concerns over water pollution, particularly from chemical and biological sources, have become increasingly pressing in contemporary society. This study investigates the effectiveness of solution combustion synthesized pure and copper-doped zinc oxide nanoparticles in photocatalytically degrading dye pollutants focusing on methylene blue. Using a green solvent solution combustion process, copper-doped zinc oxide nanoparticles were prepared and tested for their ability to degrade methylene blue dye. Parameters influencing the photodegradation efficiency including catalyst concentration, pH levels, and dye concentration were systematically evaluated. Results indicate that the photocatalytic degradation of methylene blue dye increases with irradiation time, achieving up to 94% degradation in just three hours. The nanoparticles were characterized using XRD, UV-visible diffuse reflectance spectroscopy, Raman spectroscopy, and SEM. The antimicrobial activity of synthesized nanoparticles was evaluated against gram-positive and gram-negative bacteria. The copper-doped zinc oxide exhibited significant antimicrobial activity, with a zone of inhibition measuring 12 mm and 17 mm against E. coli and Staphylococcus aureus, respectively. By leveraging their multifunctional properties, these nanoparticles not only contribute to improving public health through their microbial properties but also play a crucial role in environmental remediation by breaking down harmful organic compounds. Thus, they represent a promising innovation in medicine and environmental science, offering a sustainable solution to mitigate pollution caused by organic dye.

Full Text

Reference


Ahmad, M., Ahmed, E., Hong, Z. L., Jiao, X. L., Abbas, T. and Khalid, N. R., Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes, Appl. Surf. Sci., 285, 702-712(2013).

https://doi.org/10.1016/j.apsusc.2013.08.114

Banu Bahşi, Z. and Oral, A.Y., Effects of Mn and Cu doping on the microstructures and optical properties of sol-gel derived ZnO thin films, Opt. Mater., 29(6), 672-678 (2007).

https://doi.org/10.1016/j.optmat.2005.11.016

Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R. and Varma, A., Biosynthesis of Zinc oxide nanoparticles from Azadirachtaindica for antibacterial and Photocatalytic applications, Mater. Sci. Semicond. Process., 32, 55-61(2015).

https://doi.org/10.1016/j.mssp.2014.12.053

Davis, E. A. and Mott, N. F., Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Phil. Mag., 22(179), 903-922(1970).

https://doi.org/10.1080/14786437008221061

Deganello, F. and Tyagi, A. K., Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials, Prog. Cryst. Growth Charact. Mater., 64(2), 23–61(2018).

https://doi.org/10.1016/j.pcrysgrow.2018.03.001

Deka, S. and Joy, P. A., Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid. State. Commun., 142, 190–194(2007).

https://doi.org/10.1016/j.ssc.2007.02.017

Ding, X., Zhao, K. and Zhang, L, Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions, Environ. Sci. Technol., 48(10), 5823-5831(2014).

https://doi.org/10.1021/es405714q

Diouri, J., Lascaray, J. P. and El Amrani, M., Effect of the magnetic order on the optical absorption edge in Cd1−xMnxTe, Phys. Rev. B., 31(12), 7995(1985).

https://doi.org/10.1021/es405714q

Geetha, D. and Thilagavathi, T., Hydrothermal Synthesis of Nano ZnO Structures from CTAB, Dig. J. Nanomater. Bios., 5(2), 297-301 (2010).

Hassan, I. A. and others., Antimicrobial properties of copper doped ZnO coatings under darkness and white light illumination. ACS. Omega., 2(8), 4556-4562 (2017).

https://doi.org/10.1021/acsomega.7b00759

He, J. H., Lao, C. S., Chen, L. J., Davidovic, D. and Wang, Z. L, Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties, J. Am. Chem. Soc., 127(47), 16376-16377(2005).

https://doi.org/10.1021/ja0559193

Hyun, K., J., Kim, H., Kim, D., Ihm, Y. and Kil Choo, W., The origin of room temperature ferromagnetism in cobalt-doped zinc oxide thin films fabricated by PLD, J. Eur. Ceram. Soc., 24(6), 1847-1851 (2004).

https://doi.org/10.1016/S0955-2219(03)00447-3

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H. and Park, Y. H., Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol., 74(7), 2171-2178 (2008).

https://doi.org/10.1128/AEM.02001-07

Labhane, P. K., Huse, V. R., Patle, L. B., Chaudhari, A. L. and Sonawane, G. H., Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study, J. Chem. Eng., 03(07), 39-51 (2015).

https://doi.org/10.4236/msce.2015.37005

Lipovsky, A. and others., EPR Study of visible light-induced ROS generation by nanoparticles of ZnO, J. Phys. Chem. C, 113(36), 15997-16001 (2009).

https://doi.org/10.1021/jp904864g

Lupan, O., Chow, L., Ono, L. K., Roldan Cuenya, B., Chai, G., Khallaf, H., Park, S. and Schulte, A.,. Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C., 114, 12401-12408 (2010).

https://doi.org/10.1021/jp910263n

Mahajan, B. K., Kumar, N., Chauhan, R., Srivastava,V. C. and Gulati, S., Mechanistic evaluation of heterocyclic aromatic compounds mineralization by a Cu doped ZnO photo-catalyst, Photochem. Photobiol. Sci., 18(6), 1540-1555 (2019).

https://doi.org/10.1039/C8PP00580J

Manju, K., Micro-Raman investigation of nano-crystalline ZnO and ZnO doped with Al, RP Current Trends in Eng. Tech.,1(3), 57–61 (2022).

https://doi.org/10.1016/j.heliyon.2024.e26401

Menon, S., Rajeshkumar, S. and Venkat Kumar, S., A review on biogenic synthesis of gold nanoparticles, characterization, and its applications, Resour. Effic. Technol., 3(4), 516-527(2017).

https://doi.org/10.1016/j.reffit.2017.08.002

Mo, Z., Huang, Y., Lu, S., Fu, Y., Shen, X. and He, H., Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells, Optik,149, 63-68(2017).

https://doi.org/10.1016/j.ijleo.2017.09.035

Mhamdi, A., Mimouni, R., Amlouk, A., Amlouk, M. and Belgacem, S, Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films, J. Alloys. Comp., 610, 250(2014).

https://doi.org/10.1016/j.jallcom.2014.04.007

Mott, N. F. and Davis, E. A., Conduction processes in non-crystalline materials, Oxford. Clarendon Press., (1971).

Muthukumaran, S. and Gopalakrishnan, R., Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method, Opt. Mater., 34(11), 1946-1953(2012).

https://doi.org/10.1016/j.optmat.2012.06.004

Nimbalkar, A. R. and Patil, M. G., Synthesis of highly selective and Sensitive Cu doped ZnO think film sensor for detection of H2S gas, Mater. Sci. Semicond. Process., 71, 332-341(2017).

https://doi.org/10.1016/j.mssp.2017.08.022

Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S. J. and Morkoç, H., A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98(4), 41-301(2005).

https://doi.org/10.1063/1.1992666

Pandian, L., Rajasekaran, R. and Govindan, P., Synthesis, characterization and application of Cu doped ZnOnanocatalys for photocatalytic ozonation of textile dye and study of its reusability. Mater. Res. Express., 5, 115-505(2018).

https://doi.org/10.1088/2053-1591/aadcdf

Premanathan, M., Karthikeyan, K., Jeyasubramanian. and Manivannan, K., Selective, G., toxicity of ZnO nanoparticles toward gram positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed., 7(2), 184-192(2011).

https://doi.org/10.1016/j.nano.2010.10.001

Qi, D., Xing, M. and Zhang, J., Hydrophobic Carbon-Doped TiO2/MCF-F Composite as a High Performance Photocatalyst, J. Phys. Chem. C., 118(14), 7329–7336(2014).

https://doi.org/10.1021/jp4123979

Qiu, B., Xing, M. and Zhang, J., Nanocrystals Grown in Situ on Graphene Aerogels for High Photocatalysis and Lithium-Ion Batteries, J. Am. Chem. Soc., 136(16), 5852–5855(2014).

https://doi.org/10.1021/ja500873u

Raghupathi, K. R., Koodali, R. T. and Manna, A. C., Size- Dependent bacterial growth inhibition and mechanism of antibacterial activity of Zinc Oxide nanoparticles, Langmuir., 27(7), 4020-4028(2011).

https://doi.org/10.1021/la104825u

Ravichandran, K., Mohan, R., Sakthivel, B., Varadharajaperumal, S., Devendran, P., Alagesan, T. and Pandian, K., Enhancing the photocatalytic efficiency of sprayed ZnO thin films through double doping (Sn + F) and annealing under different ambiences, App. Surf. Sci., 321, 310–317(2014).

https://doi.org/10.1016/j.apsusc.2014.10.023

Richa, B., Amardeep, B., Jitendra, P. S., Keun, H. C., Navdeep, G. and Sanjeev, G., Structural and Electronic Investigation of ZnO Nanostructures Synthesized under Different Environments, Heliyon, 4(4), E00594(2018).

https://doi.org/10.1016/j.heliyon.2018.e00594

Saleh, R., N. and Djaja, F., Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim, Acta. A. Mol. Biomol. Spectrosc., 130, 581–590 (2014).

https://doi.org/10.1016/j.saa.2014.03.089.

Shikha, Y., Shreya, and Peeyush, P., Hydrothermal synthesis and characterization of tin telluride, RP. Current. Trends. In. Appl. Sci., 3(1), 14–19(2024).

Singhal, S., Kaur, J., Namgyal, T. and Sharma, R., Cu-Doped ZnO Nanoparticles: Synthesis, Structural and Electrical Properties, Phys. B. Condens. Matter., 407(8), 1223-1226(2012).

https://doi.org/10.1016/j.physb.2012.01.103

Silambarasan, M., Saravanan, S. and Soga, T., Raman, and Photoluminescence Studies of Ag and Fe-doped ZnO Nanoparticles, Int. J. ChemTech Res., 7(3), 1644-1650(2015).

Taut, J., Grigorovici, R. and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status. Solidi.,15, 627-637(1966).

https://doi.org/10.1002/pssb.19660150224

Thilagavathi, T. and Geetha, D., Nano ZnO Structures Synthesized in Presence of Anionic and Cationic Surfactant under Hydrothermal Process, Appl. Nanosci., 4, 127-132(2014).

https://doi.org/10.1007/s13204-012-0183-8

Wang, Y., Xu, M., Li, J., Ma, J., Wang, X., Wei, Z., Chu, X., Fang, X. and Jin, F., Nb and Ta Co-Doped TiO2 Transparent Conductive Thin Films by Magnetron Sputtering: Fabrication, Structure, and Characteristics, J. Elect. Mater., 9, 5334-5343(2018).

https://doi.org/10.5772/63234

Wibowo, J. A. and others., Cu- and Ni-Doping Effect on Structure and Magnetic Properties of Fe-Doped ZnO Nanoparticles, Adv. Mater. Phy. Chem., 3(01), 48-57 (2013).

https://doi.org/10.4236/ampc.2013.31008

Xing, M., Fang, W., Yang, X., Tian, B. and Zhang, J., Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis, Chem. Commun., 50, 6637-6640(2014).

https://doi.org/10.1039/C4CC01341G

Zhang, S., Li, J., Zeng, M., Li, J., Xu, J. and Wang, X., Bandgap Engineering and Mechanism Study of Nonmetal and Metal Ion Co-doped Carbon Nitride: C+Fe as an Example, Chem. Eur. J., 20(31), 9805–9812(2014).

https://doi.org/10.1002/chem.201400060

Zhou, X. S., Zhao, C., Hou, R., Zhang, J., Kirk, K. J., Hutson, D., Guo, Y. J., Hu, P. A., Peng, S. M., Zu, X. T. and Fu, Y. Q., Sputtered ZnO film on aluminium foils for flexible ultrasonic transducers, Ultrasonics, 54(7), 1991-1998(2014).

https://doi.org/10.1016/j.ultras.2014.05.006

Contact Us

Powered by

Powered by OJS