Eco-Friendly Concrete Solutions: The Role of Titanium Dioxide Nanoparticles in Enhancing Durability and Reducing Environmental Pollutants - A Review
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 332-344
Abstract
Concrete is one of the key components of construction, which ensures durability and aesthetics of the building. In recent days, nanoparticles are playing an essential role in civil engineering research. The binding of nanoparticles into concrete significantly improves the mechanical and durable properties due to the nanostructure of the cementitious materials. This review paper represents the existing research data on titanium dioxide nanoparticles, when applied in the different types of concrete. The data influenced by the different research papers are presented in terms of strength and durable parameters. The most important property of titanium dioxide nanoparticle is its self-cleaning effect because of the photocatalytic reaction is also discussed. The inference from the papers shows the effect of titanium dioxide nanoparticles on correct proportion enhances the production of new material with good strength and durable properties in the construction industry. The photocatalytic action of nano titanium dioxide leads to the manufacture of self-cleaning concrete which shields the surface from environmental pollutants.
Full Text
Reference
Abdalla, J. A., Thomas, B. S., Hawileh, R. A., Yang, J., Jindal, B. B. and Ariyachandra, E., Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete, Clean. Mater., 4, 100061 (2022).
https://doi.org/10.1016/j.clema.2022.100061
Ali, R. A. and Kharofa, O. H., The impact of nanomaterials on sustainable architectural applications smart concrete as a model, Mater. Today Proc., 42, 3010–3017 (2021).
https://doi.org/10.1016/j.matpr.2020.12.814
Alqedra, M. A., Dabbour, B. and Arafa, M. H., Influence of several nano minerals on the mechanical properties of fresh and hardened concrete, Scientific Cooperation’s International Workshops on Engineering Branches, KOC University, Istanbul, TURKEY, 89-93 (2014).
Amor, F., Baudys, M., Racova, Z., Scheinherrová, L., Ingrisova, L. and Hajek, P., Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete, Case Stud. Constr. Mater., 16, e00965 (2022).
https://doi.org/10.1016/j.cscm.2022.e00965
Selvasofia, A. S. D., Sarojini, E., Moulica, G., Thomas, S., Tharani, M., Saravanakumar, P. T. and Manoj Kumar, P., Study on the mechanical properties of the nanoconcrete using nano-TiO2 and nanoclay, Mater. Today Proc., 50, 1319–1325 (2022).
https://doi.org/10.1016/j.matpr.2021.08.242
Orakzai, M. A., Hybrid effect of nano-alumina and nano-titanium dioxide on Mechanical properties of concrete, Case Stud. Constr. Mater., 14, e00483 (2021).
https://doi.org/10.1016/j.cscm.2020.e00483
Ballari, M. M., Hunger, M., Hüsken, G. and Brouwers, H. J. H., NOx photocatalytic degradation employing concrete pavement containing titanium dioxide, Appl. Catal. B Environ., 95(3–4), 245–254 (2010).
https://doi.org/10.1016/j.apcatb.2010.01.002
Bost, P., Regnier, M. and Horgnies, M., Comparison of the accelerating effect of various additions on the early hydration of Portland cement, Constr. Build. Mater., 113, 290–296 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.03.052
Chen, C., Tang, B., Cao, X., Gu, F. and Huang, W., Enhanced photocatalytic decomposition of NO on portland cement concrete pavement using nano-TiO2 suspension, Constr. Build. Mater., 275, 122135 (2021).
https://doi.org/10.1016/j.conbuildmat.2020.122135
Chinthakunta, R., Ravella, D. P., Sri Rama Chand, M. and Janardhan Yadav, M., Performance evaluation of self-compacting concrete containing fly ash, silica fume and nano titanium oxide, Mater. Today Proc., 43, 2348–2354 (2021).
https://doi.org/10.1016/j.matpr.2021.01.681
Choi, H.-J., Park, J.-J. and Yoo, D.-Y., Benefits of TiO2 photocatalyst on mechanical properties and nitrogen oxide removal of ultra-high-performance concrete, Constr. Build. Mater., 285, 122921 (2021a).
https://doi.org/10.1016/j.conbuildmat.2021.122921
Choi, H.-J., Yoo, D.-Y., Park, G.-J. and Park, J.-J., Photocatalytic high-performance fiber-reinforced cement composites with white Portland cement, titanium dioxide, and surface treated polyethylene fibers, J. Mater. Res. Technol., 15, 785–800 (2021b).
https://doi.org/10.1016/j.jmrt.2021.08.027
Daniyal, M., Akhtar, S. and Azam, A., Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments, J. Mater. Res. Technol., 8(6), 6158–6172 (2019).
https://doi.org/10.1016/j.jmrt.2019.10.010
de Andrade, F. V., de Lima, G. M., Augusti, R., da Silva, J. C. C., Coelho, M. G., Paniago, R. and Machado, I. R., A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants, J. Water Process Eng., 7, 27–35 (2015).
https://doi.org/10.1016/j.jwpe.2015.04.005
Dezhampanah, S., Nikbin, I. M., Mehdipour, S., Mohebbi, R. and Moghadam, H., Fiber- reinforced concrete containing nano - TiO2 as a new gamma-ray radiation shielding materials, J. Build. Eng., 44, 102542 (2021).
https://doi.org/10.1016/j.jobe.2021.102542
Diamanti, M. V., Lollini, F., Pedeferri, M. P. and Bertolini, L., Mutual interactions between carbonation and titanium dioxide photoactivity in concrete, Build. Environ., 62, 174–181 (2013).
https://doi.org/10.1016/j.buildenv.2013.01.023
Dikkar, H., Kapre, V., Diwan, A. and Sekar, S. K., Titanium dioxide as a photocatalyst to create self-cleaning concrete, Mater. Today Proc., 45, 4058–4062 (2021).
https://doi.org/10.1016/j.matpr.2020.10.948
Folli, A., Pochard, I., Nonat, A., Jakobsen, U. H., Shepherd, A. M. and Macphee, D. E., Engineering Photocatalytic Cements: Understanding TiO 2 Surface Chemistry to Control and Modulate Photocatalytic Performances, J. Am. Ceram. Soc., 93(10), 3360–3369 (2010).
https://doi.org/10.1111/j.1551-2916.2010.03838.x
Fujishima, A., Zhang, X. and Tryk, D., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63(12), 515–582 (2008).
https://doi.org/10.1016/j.surfrep.2008.10.001
Ganapathy, G. P., Kaliyappan, S. P., Ramamoorthy, V. L., Shanmugam, S., AlObaid, A., Warad, I., Velusamy, S., Achuthan, A., Sundaram, H., Vinayagam, M. and Sivakumar, V., Low alkaline vegetation concrete with silica fume and nano-fly ash composites to improve the planting properties and soil ecology, Nanotechnol. Rev., 13(1), 20230201 (2024)
https://doi.org/10.1515/ntrev-2023-0201
Ghosal, M. and Chakraborty, A. K., Engineering the properties of nanomaterials for its use in cement concrete, Mater. Today Proc., 46, 7502–7506 (2021).
https://doi.org/10.1016/j.matpr.2021.01.206
Gopala, K. S. K. V. S., Sahitya, P. and Ravitheja, A., Influence of nano TiO2 on strength and durability properties of geopolymer concrete, Mater. Today Proc., 45, 1017–1025 (2021).
https://doi.org/10.1016/j.matpr.2020.03.139
Güneyisi, E., Gesoğlu, M., Karaoğlu, S. and Mermerdaş, K., Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes, Constr. Build. Mater., 34, 120–130 (2012).
https://doi.org/10.1016/j.conbuildmat.2012.02.017
Haider, A. J., Jameel, Z. N. and Al-Hussaini, I. H. M., Review on: Titanium Dioxide Applications, Energy Procedia, 157, 17–29 (2019).
https://doi.org/10.1016/j.egypro.2018.11.159
Hamdany, A. H., Ding, Y. and Qian, S., Mechanical and Antibacterial Behavior of Photocatalytic Lightweight Engineered Cementitious Composites, J Mater Civ Eng.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003886
Hemalatha, P. and Ramujee, K., Influence of nano material (TiO2) on Self compacting Geo polymer concrete containing Flyash, GGBS and wollastonite, Mater. Today Proc., 43, 2438–2442 (2021).
https://doi.org/10.1016/j.matpr.2021.02.279
Hunashyal, A. M., J. M., S., Banapurmath, N. R., Quadri, S. S. and Shettar, A., Experimental Investigation on the Effect of Titanium dioxide and Carbon fibers on the Mechanical and Microstructural Properties of Cement Beams, SOP Trans. Nanotechnology, 2015(1), 1–8 (2015).
https://doi.org/10.15764/NANO.2015.01001
Hüsken, G., Hunger, M. and Brouwers, H. J. H., Experimental study of photocatalytic concrete products for air purification, Build. Environ., 44(12), 2463–2474 (2009).
https://doi.org/10.1016/j.buildenv.2009.04.010
Hussien, R. M., Abd el-Hafez, L. M., Mohamed, R. A. S., Faried, A. S. and Fahmy, N. G., Influence of nano waste materials on the mechanical properties, microstructure, and corrosion resistance of self-compacted concrete, Case Stud. Constr. Mater., 16, e00859 (2022).
https://doi.org/10.1016/j.cscm.2021.e00859
Hwangbo, D., Son, D.-H., Suh, H., Sung, J., Bae, B.-I., Bae, S., So, H. and Choi, C.-S., Effect of nanomaterials (carbon nanotubes, nano-silica, graphene oxide) on bond behavior between concrete and reinforcing bars, Case Stud. Constr. Mater., 18, e02206 (2023).
https://doi.org/10.1016/j.cscm.2023.e02206
Joshaghani, A., Balapour, M., Mashhadian, M. and Ozbakkaloglu, T., Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study, Constr. Build. Mater., 245, 118444 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.118444
Jumaa, N. H., Ali, I. M., Nasr, M. S. and Falah, M. W., Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete, Case Stud. Constr. Mater., 17, e01317 (2022).
https://doi.org/10.1016/j.cscm.2022.e01317
Srinivasan, K. Vivek S. and V. Sampathkumar,V., Facilitating Eco-Friendly Construction Practices with the Sustainable Application of Nanomaterials in Concrete Composites, J. Environ. Nanotechnol., 13(2), 201–207 (2024).
https://doi.org/10.13074/jent.2024.06.242556
Kanagaraj, B., Anand, N., Cashell, K. A. and Andrushia, A. D., Post-fire behaviour of concrete containing nanomaterials as a cement replacement material, Case Stud. Constr. Mater., 18, e02171 (2023).
https://doi.org/10.1016/j.cscm.2023.e02171
Kashyap, V. S., Sancheti, G. and Yadav, J. S., Durability and microstructural behavior of Nano silica-marble dust concrete, Clean. Mater., 7, 100165 (2023).
https://doi.org/10.1016/j.clema.2022.100165
Khataee, R., Heydari, V., Moradkhannejhad, L., Safarpour, M. and Joo, S. W., Self-Cleaning and Mechanical Properties of Modified White Cement with Nanostructured TiO2, J. Nanosci. Nanotechnol., 13(7), 5109–5114 (2013).
https://doi.org/10.1166/jnn.2013.7586
Kishore, K., Pandey, A., Wagri, N. K., Saxena, A., Patel, J. and Al-Fakih, A., Technological challenges in nanoparticle-modified geopolymer concrete: A comprehensive review on nanomaterial dispersion, characterization techniques and its mechanical properties, Case Stud. Constr. Mater., 19, e02265 (2023).
https://doi.org/10.1016/j.cscm.2023.e02265
Kumar, S., Jain, S., Yadav Lamba, B. and Kumar, P., Epigrammatic status and perspective of sequestration of carbon dioxide: Role of TiO2 as photocatalyst, Sol. Energy, 159, 423–433 (2018).
https://doi.org/10.1016/j.solener.2017.11.007
Li, H., Ding, S., Zhang, L., Ouyang, J. and Han, B., Effects of particle size, crystal phase and surface treatment of nano-TiO2 on the rheological parameters of cement paste, Constr. Build. Mater., 239, 117897 (2020).
https://doi.org/10.1016/j.conbuildmat.2019.117897
Li, L., Zheng, Q., Li, Z., Ashour, A. and Han, B., Bacterial technology-enabled cementitious composites: A review, Compos. Struct., 225, 111170 (2019).
https://doi.org/10.1016/j.compstruct.2019.111170
Li, S., Hu, M., Chen, X., Sui, S., Jin, L., Geng, Y., Jiang, J. and Liu, A., The performance and functionalization of modified cementitious materials via nano titanium-dioxide: A review, Case Stud. Constr. Mater., 19, e02414 (2023).
https://doi.org/10.1016/j.cscm.2023.e02414
Liang, X., Cui, S., Li, H., Abdelhady, A., Wang, H. and Zhou, H., Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide, Transp. Res. Part D Transp. Environ., 73, 34–45 (2019).
https://doi.org/10.1016/j.trd.2019.06.001
Liu, D., Kaja, A., Chen, Y., Brouwers, H. J. H. and Yu, Q., Self-cleaning performance of photocatalytic cement mortar: Synergistic effects of hydration and carbonation, Cem. Concr. Res., 162, 107009 (2022).
https://doi.org/10.1016/j.cemconres.2022.107009
Lucas, S. S., Ferreira, V. M. and de Aguiar, J. L. B., Incorporation of titanium dioxide nanoparticles in mortars — Influence of microstructure in the hardened state properties and photocatalytic activity, Cem. Concr. Res., 43, 112–120 (2013).
https://doi.org/10.1016/j.cemconres.2012.09.007
Ma, B., Li, H., Li, X., Mei, J. and Lv, Y., Influence of nano-TiO2 on physical and hydration characteristics of fly ash–cement systems, Constr. Build. Mater., 122, 242–253 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.02.087
Meng, T., Yu, Y., Qian, X., Zhan, S. and Qian, K., Effect of nano-TiO2 on the mechanical properties of cement mortar, Constr. Build. Mater., 29, 241–245 (2012).
https://doi.org/10.1016/j.conbuildmat.2011.10.047
Mohseni, E., Naseri, F., Amjadi, R., Khotbehsara, M. M. and Ranjbar, M. M., Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash, Constr. Build. Mater., 114, 656-664 (2016).
http://dx.doi.org/10.1016/j.conbuildmat.2016.03.136
Moradi, M., Khorasheh, F. and Larimi, A., Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4, Sol. Energy, 211, 100–110 (2020).
https://doi.org/10.1016/j.solener.2020.09.054
Murad, Y., Compressive strength prediction for concrete modified with nanomaterials, Case Stud. Constr. Mater., 15, e00660 (2021).
https://doi.org/10.1016/j.cscm.2021.e00660
Nazari, A. and Riahi, S., The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete, Mater. Sci. Eng. A, 528(2), 756–763 (2010).
https://doi.org/10.1016/j.msea.2010.09.074
Norhasri, M. S. M., Hamidah, M. S. and Fadzil, A. M., Applications of using nano material in concrete: A review, Constr. Build. Mater., 133, 91–97 (2017).
https://doi.org/10.1016/j.conbuildmat.2016.12.005
Oner, A., Akyuz, S. and Yildiz, R., An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete, Cem. Concr. Res., 35(6), 1165–1171 (2005).
https://doi.org/10.1016/j.cemconres.2004.09.031
P. P., A., Nayak, D. K., Sangoju, B., Kumar, R. and Kumar, V., Effect of nano-silica in concrete; a review, Constr. Build. Mater., 278, 122347 (2021).
https://doi.org/10.1016/j.conbuildmat.2021.122347
Pacheco-Torgal, F. and Jalali, S., Nanotechnology: Advantages and drawbacks in the field of construction and building materials, Constr. Build. Mater., 25(2), 582–590 (2011).
https://doi.org/10.1016/j.conbuildmat.2010.07.009
Park, J.-J., Kwark, J.-W., Yi, K. B., Kim, J. K. and Yoo, D.-Y., Development of foam concrete with nitrogen oxides removal capability using various forms of titanium dioxide, Case Stud. Constr. Mater., 19, e02602 (2023).
https://doi.org/10.1016/j.cscm.2023.e02602
Podporska-Carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L. and Pillai, S. C., Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B Environ., 176–177, 70–75 (2015).
https://doi.org/10.1016/j.apcatb.2015.03.029
Praseeda, D. and Srinivasa Rao, K., Durability performance and microstructure analysis of nano engineered blended concrete, Clean. Mater., 6, 100155 (2022).
https://doi.org/10.1016/j.clema.2022.100155
Praveenkumar, T. R., Vijayalakshmi, M. M. and Meddah, M. S., Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash, Constr. Build. Mater., 217, 343–351 (2019).
https://doi.org/10.1016/j.conbuildmat.2019.05.045
Rao, S., Silva, P. and de Brito, J., Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2), Constr. Build. Mater., 96, 508–517 (2015).
https://doi.org/10.1016/j.conbuildmat.2015.08.049
Raza, A., Azab, M., Baki, Z. A., El Hachem, C., El Ouni, M. H. and Kahla, N. Ben, Experimental study on mechanical, toughness and microstructural characteristics of micro-carbon fibre-reinforced geopolymer having nano TiO2, Alexandria Eng. J., 64, 451–463 (2023).
https://doi.org/10.1016/j.aej.2022.09.001
Ren, J., Lai, Y. and Gao, J., Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete, Constr. Build. Mater., 175, 277–285 (2018).
https://doi.org/10.1016/j.conbuildmat.2018.04.181
Reshma, T. V, Manjunatha, M., Bharath, A., Tangadagi, R. B., Vengala, J. and Manjunatha, L., Influence of ZnO and TiO2 on mechanical and durability properties of concrete prepared with and without polypropylene fibers, Materialia, 18, 101138 (2021).
https://doi.org/10.1016/j.mtla.2021.101138
Saleh, A. N., Attar, A. A., Ahmed, O. K. and Mustafa, S. S., Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2, Results Eng., 12, 100303 (2021).
https://doi.org/10.1016/j.rineng.2021.100303
Salemi, N., Behfarnia, K. and Zaree, S. A. . Effect of nanoparticles on frost durability of concrete, Asian Journal of Civil Engineering, 15(3), 411-420 (2014).
Samuvel Raj, R., Prince Arulraj, G., Anand, N., Kanagaraj, B., Lubloy, E. and Naser, M. Z., Nanomaterials in geopolymer composites: A review, Dev. Built Environ., 13, 100114 (2023).
https://doi.org/10.1016/j.dibe.2022.100114
Sanchez, F. and Sobolev, K., Nanotechnology in concrete – A review, Constr. Build. Mater., 24(11), 2060–2071 (2010).
https://doi.org/10.1016/j.conbuildmat.2010.03.014
Satyanarayana, D. and Padmapriya, R., Performance of photocatalytic concrete blended with M-Sand, POFA and Titanium Dioxide, Mater. Today Proc., 44, 4919–4923 (2021).
https://doi.org/10.1016/j.matpr.2020.11.949
Senff, L., Hotza, D., Lucas, S., Ferreira, V. M. and Labrincha, J. A., Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars, Mater. Sci. Eng. A, 532, 354–361 (2012).
https://doi.org/10.1016/j.msea.2011.10.102
Seo, D. and Yun, T. S., NOx removal rate of photocatalytic cementitious materials with TiO 2 in wet condition, Build. Environ., 112, 233–240 (2017).
https://doi.org/10.1016/j.buildenv.2016.11.037
Shafaei, D., Yang, S., Berlouis, L. and Minto, J., Multiscale pore structure analysis of nano titanium dioxide cement mortar composite, Mater. Today Commun., 22, 100779 (2020).
https://doi.org/10.1016/j.mtcomm.2019.100779
Shaili, T., Abdorreza, M. N. and Fariborz, N., Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO 2, Carbohydr. Polym., 134, 726–731 (2015).
https://doi.org/10.1016/j.carbpol.2015.08.073
Shen, S., Burton, M., Jobson, B. and Haselbach, L., Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment, Constr. Build. Mater., 35, 874–883 (2012).
https://doi.org/10.1016/j.conbuildmat.2012.04.097
Sikora, P., Horszczaruk, E. and Rucinska, T., The Effect of Nanosilica and Titanium Dioxide on the Mechanical and Self-Cleaning Properties of Waste-Glass Cement Mortar, Procedia Eng., 108, 146–153 (2015).
https://doi.org/10.1016/j.proeng.2015.06.130
Singh, N. B., Kalra, M. and Saxena, S. K., Nanoscience of Cement and Concrete, Mater. Today Proc., 4(4), 5478–5487 (2017).
https://doi.org/10.1016/j.matpr.2017.06.003
Sobhy, C. S., Tawfik, T. A., El Hafez, G. M. A. and Faried, A. S., Insights on the influence of nano-Titanium dioxide and nano-Zinc oxide on mechanical properties and inhibiting of steel reinforcement, Case Stud. Constr. Mater., 16, e01017 (2022).
https://doi.org/10.1016/j.cscm.2022.e01017
Sun, J., Tian, L., Yu, Z., Zhang, Y., Li, C., Hou, G. and Shen, X., Studies on the size effects of nano-TiO2 on Portland cement hydration with different water to solid ratios, Constr. Build. Mater., 259, 120390 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.120390
Thanmanaselvi, M. and Ramasamy, V., A study on durability characteristics of nano-concrete, Mater. Today Proc., 80, 2360–2365 (2023).
https://doi.org/10.1016/j.matpr.2021.06.349
Tufail, R. F., Naeem, M. H., Ahmad, J., Waheed, H., Majdi, A., Farooq, D., Maqsoom, A. and Butt, F., Evaluation of the fresh and mechanical properties of nano-engineered Self compacting concrete containing graphite nano/micro platelets, Case Stud. Constr. Mater., 17, e01165 (2022).
https://doi.org/10.1016/j.cscm.2022.e01165
Tung, W. S. and Daoud, W. A., Self-cleaning fibers via nanotechnology: a virtual reality, J. Mater. Chem., 21(22), 7858 (2011).
https://doi.org/10.1039/c0jm03856c
Wang, Z., Yu, Q., Feng, P. and Brouwers, H. J. H., Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates, Cem. Concr. Res., 158, 106852 (2022).
https://doi.org/10.1016/j.cemconres.2022.106852
Wang, Z., Yu, Q., Gauvin, F., Feng, P., Qianping, R. and Brouwers, H. J. H., Nanodispersed TiO2 hydrosol modified Portland cement paste: The underlying role of hydration on self-cleaning mechanisms, Cem. Concr. Res., 136, 106156 (2020).
https://doi.org/10.1016/j.cemconres.2020.106156
Yeung, K. L., Leung, W. K., Yao, N. and Cao, S., Reactivity and antimicrobial properties of nanostructured titanium dioxide, Catal. Today, 143(3–4), 218–224 (2009).
https://doi.org/10.1016/j.cattod.2008.09.036
Zhao, Q., Wang, M., Yang, H., Shi, D. and Wang, Y., Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders, Ceram. Int., 44(5), 5145–5154 (2018).
https://doi.org/10.1016/j.ceramint.2017.12.117
Zhu, Q., Chua, M. H., Ong, P. J., Cheng Lee, J. J., Le Osmund Chin, K., Wang, S., Kai, D., Ji, R., Kong, J., Dong, Z., Xu, J. and Loh, X. J., Recent advances in nanotechnology-based functional coatings for the built environment, Mater. Today Adv., 15, 100270 (2022).