Open Access

Facile Synthesis and Characterization of Pure and Bi-doped ZnS Nanoparticles for Photocatalytic Application

T. Shobana, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India T. Venkatesan, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India R. Sakthi Sudar Saravanan, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India D. Kathirvel, kathirvelde@gmail.com
Department of Physics, Government Arts College, Coimbatore, TN, India
K. Valliyammal Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 108-114

https://doi.org/10.13074/jent.2024.09.243870

PDF


Abstract

In the present research, a simple solvothermal microwave irradiation (SMI) method has been adopted for the preparation and synthesis of pure and Bi doped ZnS nanoparticles using zinc acetate, bismuth acetate, thiourea and ethylene glycol were utilized as precursors. As-synthesized pure and Bi doped ZnS nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDAX), ultraviolet-visible (UV-vis) spectroscopy and Field emission scanning electron microscopy (FESEM). From the XRD and EDAX studies, crystallite size, lattice parameter and analysis of the elemental compositions are calculated and analyzed respectively. The UV-vis spectra revealed that the optical band gap energy of pure and Bi doped ZnS nanoparticles was calculated. The FESEM shows that the average particle size spherical and agglomerated of as-synthesized pure and Bi doped ZnS nanoparticles sizes were decreased. In addition, the photocatalytic activity of pure and Bi doped ZnS nanoparticles was studied with methylene blue dye in an aqueous solution under UV light irradiation; the 5.0 mol % of Bi doped ZnS nanoparticles dye degradation efficiency of the sample was calculated as 75% in 120 minutes.

Full Text

Reference


Al- Rasoul, K. T., Abbas, N. K., Shanan, Z. J., Structural and Optical Characterization of Cu and Ni Doped ZnS Nanoparticles, Int. J. Electrochem. Sci. 8(4), 5594–5604 (2013).

https://doi.org/10.1016/S1452-3981(23)14706-7

Ali, A. H., Hashem, H. A., Elfalaky, A., Preparation, Properties, and Characterization of ZnS Nanoparticles, Engineering Proceedings, 74 (2022).

https://doi.org/10.3390/ASEC2022-13829

Altıokka, B., Effects of Inhibitor on ZnS Thin Films Fabricated by Electrodeposition, J. Electron. Mater. 48(4), 2398–2403 (2019).

https://doi.org/10.1007/s11664-019-06950-z

Ashokkumar, M., Boopathyraja, A., Structural and optical properties of Mg doped ZnS quantum dots and biological applications, Superlattices Microstruct. 113, 236–243 (2018).

https://doi.org/10.1016/j.spmi.2017.11.005

Bhat, B. A., Jadon, N., Dubey, L., Mir, S. A., Facile Synthesis of a Crystalline Zinc Sulfide/Chitosan Biopolymer Nanocomposite: Characterization and Application for Photocatalytic Degradation of Textile Dyes and Anticancer Activity, ACS Omega 9(23), 24425–24437 (2024).

https://doi.org/10.1021/acsomega.4c00247

Bui, H. Van, Thai, D. Van, Nguyen, T. D., Lam, V. N., Tran, H. T., Nguyen, V. M., Nui, N. D., Hung, N. M., Mn-doped ZnS nanoparticle photoanodes: Synthesis, structural, optical, and photoelectrochemical characteristics, Mater. Chem. Phys. 307, 128081 (2023).

https://doi.org/10.1016/j.matchemphys.2023.128081

Calandra, P., Goffredi, M., Liveri, V. T., Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy, Colloids Surfaces A Physicochem. Eng. Asp. 160(1), 9–13 (1999).

https://doi.org/10.1016/S0927-7757(99)00256-3

Charinpanitkul, T., Chanagul, A., Dutta, J., Rungsardthong, U., Tanthapanichakoon, W., Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion, Sci. Technol. Adv. Mater. 6(3–4), 266–271 (2005).

https://doi.org/10.1016/j.stam.2005.02.005

Dhupar, A., Kumar, S., Tuli, H. S., Sharma, A. K., Sharma, V., Sharma, J. K., In-doped ZnS nanoparticles: structural, morphological, optical and antibacterial properties, Appl. Phys. A 127(4), 263 (2021).

https://doi.org/10.1007/s00339-021-04425-9

Dixit, N., Vaghasia, J. V., Soni, S. S., Sarkar, M., Chavda, M., Agrawal, N., Soni, H. P., Photocatalytic activity of Fe doped ZnS nanoparticles and carrier mediated ferromagnetism, J. Environ. Chem. Eng. 3(3), 1691–1701 (2015).

https://doi.org/10.1016/j.jece.2015.06.010

Elsi, S., Pushpanathan, K., Room temperature ferromagnetism in ZnS and ZnO nanoparticles, Inorg. Nano-Metal Chem. 51(4), 590–600 (2021).

https://doi.org/10.1080/24701556.2020.1799405

Goktas, A., Tumbul, A., Aslan, F., A new approach to growth of chemically depositable different ZnS nanostructures, J. Sol-Gel Sci. Technol. 90(3), 487–497 (2019).

https://doi.org/10.1007/s10971-019-04990-9

Hussein M. Hussein, Structural and Optomagnetic Properties of Ni-Doped ZnS Synthesized by Solvothermal Method, Colloid J. 85(4), 666–672 (2023).

https://doi.org/10.1134/S1061933X22600610

Jadraque, M., Evtushenko, A. B., Ávila-Brande, D., López-Arias, M., Loriot, V., Shukhov, Y. G., Kibis, L. S., Bulgakov, A. V., Martín, M., Co-Doped ZnS Clusters and Nanostructures Produced by Pulsed Laser Ablation, J. Phys. Chem. C 117(10), 5416–5423 (2013).

https://doi.org/10.1021/jp3108792

Jindal, S., Sharma, P., Magnetic and optical properties of transition metal (Fe, Co) and rare-earth (Tb, Dy) doped ZnS nanoparticles, J. Alloys Compd. 879, 160383 (2021).

https://doi.org/10.1016/j.jallcom.2021.160383

Kalantari, S., Shokuhfar, A., On the diverse utility of Cu doped ZnS/Fe3O4 nanocomposites, Sci. Rep. 14(1), 11669 (2024).

https://doi.org/10.1038/s41598-024-62611-0

Khan, M. M., Abdulwahab, K. O., Metals- and non-metals-doped ZnS for various photocatalytic applications, Mater. Sci. Semicond. Process. 181, 108634 (2024).

https://doi.org/doi: 10.1016/j.mssp.2024.108634

Khorsand Zak, A., Majid, W. H. A., Ebrahimizadeh Abrishami, M., Yousefi, R., Parvizi, R., Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (X = Mn, Ni, and Co) using Scherrer and size–strain plot methods, Solid State Sci. 14(4), 488–494 (2012).

https://doi.org/10.1016/j.solidstatesciences.2012.01.019

Mani, S. K., Saroja, M., Venkatachalam, M., Rajamanickam, T., Antimicrobial Activity and Photocatalytic Degradation Properties of Zinc Sulfide Nanoparticles Synthesized by Using Plant Extracts, J. Nanostructures 8(2), 107–118 (2018).

https://doi.org/10.22052/JNS.2018.02.001

Othman, A. A., Osman, M. A., Ali, M. A., Mohamed, W. S., Ibrahim, E. M. M., Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties, J. Mater. Sci. Mater. Electron. 31(2), 1752–1767 (2020).

https://doi.org/10.1007/s10854-019-02693-z

Palve, A. M., Deposition of Zinc Sulfide Thin Films From Zinc(II) Thiosemicarbazones as Single Molecular Precursors Using Aerosol Assisted Chemical Vapor Deposition Technique, Front Mater., 6 (2019).

https://doi.org/10.3389/fmats.2019.00046

Ramasamy, V., Praba, K., Murugadoss, G., Synthesis and study of optical properties of transition metals doped ZnS nanoparticles, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 963–971 (2012).

https://doi.org/10.1016/j.saa.2012.07.125

Rana, M. S., Das, S. K., Rahman, M. O., Ahmed, F., Hossain, M. A., Vanadium Doped ZnS Nanoparticles: Effect of Vanadium Concentration on Structural, Optical and Electrical Properties, Trans. Electr. Electron. Mater. 22(5), 612–621 (2021).

https://doi.org/10.1007/s42341-020-00265-1

Reza Gholipour, M., Dinh, C.-T., Béland, F., Do, T.-O., Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale 7(18), 8187–8208 (2015).

https://doi.org/10.1039/C4NR07224C

Riazian, M., Yousefpoor, M., Photocatalytic activity, nanostructure and optical properties of 3D ZnS urchin-like via hydrothermal method, Int. J. Smart Nano Mater. 11(1), 47–64 (2020).

https://doi.org/doi:10.1080/19475411.2019.1710001

Rose, M. M., Christy, R. S., Benitta, T. A., Kumaran, J. T. T., Bindhu, M. R., Phase transition in ZnS nanoparticles: electrical, thermal, structural, optical, morphological, antibacterial and photocatalytic properties, Chalcogenide Lett. 19(11), 855–869 (2022).

https://doi.org/10.15251/CL.2022.1911.855

Sabaghi, V., Davar, F., Fereshteh, Z., ZnS nanoparticles prepared via simple reflux and hydrothermal method: Optical and photocatalytic properties, Ceram. Int. 44(7), 7545–7556 (2018).

https://doi.org/10.1016/j.ceramint.2018.01.159

Shahid, R., Toprak, M. S., Muhammed, M., Microwave-assisted low temperature synthesis of wurtzite ZnS quantum dots, J. Solid State Chem. 187, 130–133 (2012).

https://doi.org/10.1016/j.jssc.2012.01.007

Shanmugam, N., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G., Effect of polyvinylpyrrolidone as capping agent on Ce3+ doped flowerlike ZnS nanostructure, Solid State Sci. 28, 55–60 (2014).

https://doi.org/10.1016/j.solidstatesciences.2013.12.008

Shobana, T., Venkatesan, T., Kathirvel, D., A Comprehensive Review on Zinc Sulphide Thin Film by Chemical Bath Deposition Techniques, J. Environ. Nanotechnol. 9(1), 50–59 (2020).

https://doi.org/10.13074/jent.2021.03.201394

Song, S., Xing, Z., Zhao, H., Li, Z., Wei Zhou, Recent advances in bismuth-based photocatalysts: Environment and energy applications, Green Energy Environ. 8(5), 1232–1264 (2023).

https://doi.org/10.1016/j.gee.2022.04.004

Sousa, D. M., Alves, L. C., Marques, A., Gaspar, G., Lima, J. C., Ferreira, I., Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles, Sci. Rep. 8(1), 15992 (2018).

https://doi.org/10.1038/s41598-018-34268-z

Shobana, T., Saravanan, R. S. S., Kathirvel, D., Effect of Copper Inclusion in Zinc sulfide Thin Films for Photocatalytic Applications, J. Environ. Nanotechnol. 13(1), 234–242 (2024).

https://doi.org/10.13074/jent.2024.03.241539

Tounsi, A., Talantikite-Touati, D., Khalfi, R., Merzouk, H., Haddad, H., Optical and Structural Properties of ZnS:La Thin Films Elaborated by Sol-Gel Method, In: Proceedings of the Third International Symposium on Materials and Sustainable Development. Springer International Publishing, Cham, pp 44–51, (2018).

https://doi.org/10.1007/978-3-319-89707-3_6

Wang, W., Lee, G.-J., Wang, P., Qiao, Z., Liu, N., Wu, J. J., Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process, Sep. Purif. Technol. 237, 116469 (2020).

https://doi.org/10.1016/j.seppur.2019.116469

Yang, M.-Q., Han, C., Xu, Y.-J., Insight into the Effect of Highly Dispersed MoS 2 versus Layer-Structured MoS 2 on the Photocorrosion and Photoactivity of CdS in Graphene–CdS–MoS 2 Composites, J. Phys. Chem. C 119(49), 27234–27246 (2015).

https://doi.org/10.1021/acs.jpcc.5b08016

Yu, L., Ruan, H., Zheng, Y., Li, D., A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity, Nanotechnology 24(37), 375601 (2013).

https://doi.org/10.1088/0957-4484/24/37/375601

Zhang, J., Liu, S., Yu, J., Jaroniec, M., A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H2-production activity, J. Mater. Chem. 21(38), 14655 (2011).

https://doi.org/10.1039/c1jm12596f

Contact Us

Powered by

Powered by OJS