Open Access

Integral and Surface Treatment Method of Waterproofing: A Review and Comparative Analysis

Aniket Bansal, Aniketbansal3655@gmail.com
Department of Civil Engineering, Chandigarh University, Mohali, PB, India
Balwinder Lallotra, Department of Civil Engineering, Chandigarh University, Mohali, PB, India Aman Sehgal Ultratech Cement, HR, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 171-187

https://doi.org/10.13074/jent.2024.09.243863

PDF


Abstract

         Water seepage into concrete can cause deterioration and other aesthetic issues that limit the life of concrete constructions. This paper examines and contrasts the various kinds of waterproofing techniques. There are essentially two types: surface treatment method and integral method. Water repellents, crystalline admixtures, and densifiers are examples of integral methods. Surface treatment methods encompass pore-blocking, hydrophobic impregnation, surface coating, and multifunctional surface treatment. The processes of various approaches are examined in this article, followed by a comparison of their durability and mechanical properties. We discuss several properties, such as sulfate attack, chloride penetration, carbonation, reinforcement corrosion, water absorption and permeability, compressive, flexural, and tensile strength. The findings indicate that each has merits and demerits of their own. The inclusion of an integral admixture to concrete offers a number of advantages over surface protection, including convenience of application, the removal of the need for ongoing maintenance, and minimal to no deterioration over time. While surface treatment methods significantly reduce water permeability and porosity. In conclusion, we give a succinct summary of certain issues regarding the present state of research and future directions for the hydrophobic modification of concrete.

Full Text

Reference


Abdou, M. I., Abuseda, H., Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying and environmental impact, Egypt. J. Pet. 25(2), 193–199 (2016).

https://doi.org/10.1016/j.ejpe.2015.04.004

Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A., Shokrgozar, A., Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives, Constr. Build. Mater. 262, 120034 (2020).

https://doi.org/10.1016/j.conbuildmat.2020.120034

Aguiar, J. B., Júnior, C., Carbonation of surface protected concrete, Constr. Build. Mater. 49, 478–483 (2013).

https://doi.org/10.1016/j.conbuildmat.2013.08.058

Al-Kheetan, M. J., Rahman, M. M., Integration of Anhydrous Sodium Acetate (ASAc) into Concrete Pavement for Protection against Harmful Impact of Deicing Salt, Jom 71(12), 4899–4909 (2019).

https://doi.org/10.1007/s11837-019-03624-3

Al-Kheetan, M. J., Rahman, M. M., Chamberlain, D. A., Development of hydrophobic concrete by adding dual-crystalline admixture at mixing stage, Struct. Concr. 19(5), 1504–1511 (2018).

https://doi.org/10.1002/suco.201700254

Al-Kheetan, M. J., Rahman, M. M., Ghaffar, S. H., Al-Tarawneh, M., Jweihan, Y. S., Comprehensive investigation of the long-term performance of internally integrated concrete pavement with sodium acetate, Results Eng. 6(January), 100110 (2020).

https://doi.org/10.1016/j.rineng.2020.100110

Al-Rashed, R., Al-Jabari, M., Multi-crystallization enhancer for concrete waterproofing by pore blocking, Constr. Build. Mater. 272, 121668 (2021).

https://doi.org/10.1016/j.conbuildmat.2020.121668

Almusallam, A. A., Khan, F. M., Dulaijan, S. U., Al-Amoudi, O. S. B., Effectiveness of surface coatings in improving concrete durability, Cem. Concr. Compos. 25(4-5 SPEC), 473–481 (2003).

https://doi.org/10.1016/S0958-9465(02)00087-2

Amidi, S., Wang, J., Surface treatment of concrete bricks using calcium carbonate precipitation, Constr. Build. Mater. 80, 273–278 (2015).

https://doi.org/10.1016/j.conbuildmat.2015.02.001

Arbi, K., Nedeljković, M., Zuo, Y., Ye, G., A Review on the Durability of Alkali-Activated Fly Ash/Slag Systems: Advances, Issues, and Perspectives, Ind. Eng. Chem. Res. 55(19), 5439–5453 (2016).

https://doi.org/10.1021/acs.iecr.6b00559

Bader, T., Lackner, R., Acrylic surface treatment applied to architectural High-Performance Concrete (HPC): Identification of potential pitfalls on the way to long-lasting protection, Constr. Build. Mater. 237, 117415 (2020).

https://doi.org/10.1016/j.conbuildmat.2019.117415

Bader, T., Waldner, B. J., Unterberger, S. H., Lackner, R., On the performance of film formers versus penetrants as water-repellent treatment of High-Performance Concrete (HPC) surfaces, Constr. Build. Mater. 203, 481–490 (2019).

https://doi.org/10.1016/j.conbuildmat.2019.01.089

Baltazar, L., Santana, J., Lopes, B., Paula Rodrigues, M., Correia, J. R., Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture, Constr. Build. Mater. 70, 191–200 (2014).

https://doi.org/10.1016/j.conbuildmat.2014.07.071

Basheer, L., Cleland, D. J., Freeze-thaw resistance of concretes treated with pore liners, Constr. Build. Mater. 20(10), 990–998 (2006).

https://doi.org/10.1016/j.conbuildmat.2005.06.010

Basheer, P. A. M., Basheer, L., Cleland, D. J., Long, A. E., Surface treatments for concrete: Assessment methods and reported performance, Constr. Build. Mater. 11(7–8), 413–429 (1997).

https://doi.org/10.1016/S0950-0618(97)00019-6

Batis, G., Pantazopoulou, P., Routoulas, A., Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor, Cem. Concr. Compos. 25(3), 371–377 (2003).

https://doi.org/10.1016/S0958-9465(02)00061-6

Berndt, M. L., Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria, Constr. Build. Mater. 25(10), 3893–3902 (2011).

https://doi.org/10.1016/j.conbuildmat.2011.04.014

Bhogayata, A. C., Arora, N. K., Workability, strength, and durability of concrete containing recycled plastic fibers and styrene-butadiene rubber latex, Constr. Build. Mater. 180, 382–395 (2018).

https://doi.org/10.1016/j.conbuildmat.2018.05.175

Birenboim, M., Nadiv, R., Alatawna, A., Buzaglo, M., Schahar, G., Lee, J., Kim, G., Peled, A., Regev, O., Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites, Compos. Part B Eng. 161(October 2018), 68–76 (2019).

https://doi.org/10.1016/j.compositesb.2018.10.030

Cantero, B., Bravo, M., de Brito, J., Sáez del Bosque, I. F., Medina, C., Water transport and shrinkage in concrete made with ground recycled concrete-additioned cement and mixed recycled aggregate, Cem Concr Compos.

https://doi.org/10.1016/j.cemconcomp.2021.103957

Cardenas, H. E., Nanomaterials in Concrete: Advances in Protection, Repair, and Upgrade, , 176 (2012).

Cardenas, H. E., Struble, L. J., Modeling Electrokinetic Nanoparticle Penetration for Permeability Reduction of Hardened Cement Paste, J. Mater. Civ. Eng. 20(11), 683–691 (2008).

https://doi.org/10.1061/(asce)0899-1561(2008)20:11(683)

Carmona-Quiroga, P. M., Martínez-Ramírez, S., Sobrados, I., Blanco-Varela, M. T., Interaction between two anti-graffiti treatments and cement mortar (paste), Cem. Concr. Res. 40(5), 723–730 (2010).

https://doi.org/10.1016/j.cemconres.2010.01.002

Carrascosa, L. A. M., Zarzuela, R., Badreldin, N., Mosquera, M. J., A Simple, Long-Lasting Treatment for Concrete by Combining Hydrophobic Performance with a Photoinduced Superhydrophilic Surface for Easy Removal of Oil Pollutants, ACS Appl. Mater. Interfaces 12(17), 19974–19987 (2020).

https://doi.org/10.1021/acsami.0c03576

Chang, C. F., Chen, J. W., The experimental investigation of concrete carbonation depth, Cem. Concr. Res. 36(9), 1760–1767 (2006).

https://doi.org/10.1016/j.cemconres.2004.07.025

Chen, B., Shao, H., Li, B., Li, Z., Influence of silane on hydration characteristics and mechanical properties of cement paste, Cem Concr Compos.

https://doi.org/10.1016/j.cemconcomp.2020.103743

Chen, H., Wu, Y., Xia, H., Jing, B., Zhang, Q., Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing, J. Traffic Transp. Eng. (English Ed. 5(3), 224–238 (2018a).

https://doi.org/10.1016/j.jtte.2018.03.002

Chen, J., Ma, X., Wang, H., Xie, P., Huang, W., Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer, Constr. Build. Mater. 161, 598–605 (2018b).

https://doi.org/10.1016/j.conbuildmat.2017.11.170

Chi, J., Zhang, G., Xie, Q., Ma, C., Zhang, G., High performance epoxy coating with cross-linkable solvent via Diels-Alder reaction for anti-corrosion of concrete, Prog. Org. Coatings 139(September 2019), 105473 (2020).

https://doi.org/10.1016/j.porgcoat.2019.105473

Choudalakis, G., Gotsis, A. D., Permeability of polymer/clay nanocomposites: A review, Eur. Polym. J. 45(4), 967–984 (2009).

https://doi.org/10.1016/j.eurpolymj.2009.01.027

Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., Glass, G. K., Long-term performance of surface impregnation of reinforced concrete structures with silane, Constr. Build. Mater. 48, 708–716 (2013).

https://doi.org/10.1016/j.conbuildmat.2013.07.038

Chruściel, J. J., Leśniak, E., Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates, Prog. Polym. Sci. 14, 67–121 (2015).

https://doi.org/10.1016/j.progpolymsci.2014.08.001

Courard, L., Zhao, Z., Michel, F., Influence of hydrophobic product nature and concentration on carbonation resistance of cultural heritage concrete buildings, Cem. Concr. Compos. 115(July 2020), 1–11 (2021).

https://doi.org/10.1016/j.cemconcomp.2020.103860

Dai, J. G., Akira, Y., Wittmann, F. H., Yokota, H., Zhang, P., Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks, Cem. Concr. Compos. 32(2), 101–109 (2010).

https://doi.org/10.1016/j.cemconcomp.2009.11.001

Dang, Y., Xie, N., Kessel, A., McVey, E., Pace, A., Shi, X., Accelerated laboratory evaluation of surface treatments for protecting concrete bridge decks from salt scaling, Constr. Build. Mater. 55, 128–135 (2014).

https://doi.org/10.1016/j.conbuildmat.2014.01.014

De Muynck, W., De Belie, N., Verstraete, W., Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete, Cem. Concr. Compos. 31(3), 163–170 (2009).

https://doi.org/10.1016/j.cemconcomp.2008.12.004

Diamanti, M. V., Brenna, A., Bolzoni, F., Berra, M., Pastore, T., Ormellese, M., Effect of polymer modified cementitious coatings on water and chloride permeability in concrete, Constr. Build. Mater. 49(November 2017), 720–728 (2013).

https://doi.org/10.1016/j.conbuildmat.2013.08.050

Drozdov, A. D., De, J., Gupta, R. K., Shah, A. P., Model for anomalous moisture diffusion through a polymer-clay nanocomposite, J. Polym. Sci. Part B Polym. Phys. 41(5), 476–492 (2003).

https://doi.org/10.1002/polb.10393

Ebrahimi, K., Daiezadeh, M. J., Zakertabrizi, M., Zahmatkesh, F., Habibnejad Korayem, A., A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective, Constr. Build. Mater. 186, 1105–1113 (2018).

https://doi.org/10.1016/j.conbuildmat.2018.08.029

Elsener, B., Corrosion of Steel in Concrete, Mater. Sci. Technol. A Compr. Treat. 1–2(April 2008), 389–436 (2008).

https://doi.org/10.1002/9783527619306.ch17

Faatz, M., Gröhn, F., Wegner, G., Mineralization of calcium carbonate by controlled release of carbonate in aqueous solution, Mater. Sci. Eng. C 25(2), 153–159 (2005).

https://doi.org/10.1016/j.msec.2005.01.005

Falchi, L., Zendri, E., Müller, U., Fontana, P., The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars, Cem. Concr. Compos. 59, 107–118 (2015).

https://doi.org/10.1016/j.cemconcomp.2015.02.004

Feng, H., Le, H. T. N., Wang, S., Zhang, M. H., Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars, Constr. Build. Mater. 129, 48–60 (2016).

https://doi.org/10.1016/j.conbuildmat.2016.11.004

Feng, Z., Wang, F., Xie, T., Ou, J., Xue, M., Li, W., Integral hydrophobic concrete without using silane, Constr. Build. Mater. 227, 116678 (2019).

https://doi.org/10.1016/j.conbuildmat.2019.116678

Fischer, H., Polymer nanocomposites: From fundamental research to specific applications, Mater. Sci. Eng. C 23(6–8), 763–772 (2003).

https://doi.org/10.1016/j.msec.2003.09.148

Franzoni, E., Varum, H., Natali, M. E., Bignozzi, M. C., Melo, J., Rocha, L., Pereira, E., Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods, Cem. Concr. Compos. 49, 50–58 (2014).

https://doi.org/10.1016/j.cemconcomp.2013.12.013

Geetha, A., Perumal, P., Effect of Waterproofing Admixtures on the Flexural Strength and Corrosion Resistance of Concrete, J. Inst. Eng. Ser. A 93(1), 73–78 (2012).

https://doi.org/10.1007/s40030-012-0009-4

Glasser, F. P., Marchand, J., Samson, E., Durability of concrete - Degradation phenomena involving detrimental chemical reactions, Cem. Concr. Res. 38(2), 226–246 (2008).

https://doi.org/10.1016/j.cemconres.2007.09.015

Hackman, I., Hollaway, L., Epoxy-layered silicate nanocomposites in civil engineering, Compos. Part A Appl. Sci. Manuf. 37(8), 1161–1170 (2006).

https://doi.org/10.1016/j.compositesa.2005.05.027

Hinder, S. J., Lowe, C., Maxted, J. T., Perruchot, C., Watts, J. F., Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study, Prog. Org. Coatings 54(1), 20–27 (2005).

https://doi.org/10.1016/j.porgcoat.2005.03.012

Hou, P., Cheng, X., Qian, J., Shah, S. P., Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nanoSiO2 and its precursor, Constr. Build. Mater. 53, 66–73 (2014).

https://doi.org/10.1016/j.conbuildmat.2013.11.062

Hou, P., Cheng, X., Qian, J., Zhang, R., Cao, W., Shah, S. P., Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-to-cement ratios, Cem. Concr. Compos. 55, 26–33 (2015).

https://doi.org/10.1016/j.cemconcomp.2014.07.022

Hover, K. C., The influence of water on the performance of concrete, Constr. Build. Mater. 25(7), 3003–3013 (2011).

https://doi.org/10.1016/j.conbuildmat.2011.01.010

Hu, C., Kim, J. K., Epoxy-organoclay nanocomposites: Morphology, moisture absorption behavior and thermo-mechanical properties, Compos. Interfaces 12(3–4), 271–289 (2005).

https://doi.org/10.1163/1568554053971597

Jahandari, S., Tao, Z., Alim, M. A., Li, W., Integral waterproof concrete: A comprehensproof concreteive review, J. Build. Eng. 78(September), 107718 (2023).

https://doi.org/10.1016/j.jobe.2023.107718

Jia, L., Shi, C., Pan, X., Zhang, J., Wu, L., Effects of inorganic surface treatment on water permeability of cement-based materials, Cem. Concr. Compos. 67, 85–92 (2016).

https://doi.org/10.1016/j.cemconcomp.2016.01.002

Jiang, L., Xue, X., Zhang, W., Yang, J., Zhang, H., Li, Y., Zhang, R., Zhang, Z., Xu, L., Qu, J., Song, J., Qin, J., The investigation of factors affecting the water impermeability of inorganic sodium silicate-based concrete sealers, Constr. Build. Mater. 93, 729–736 (2015).

https://doi.org/10.1016/j.conbuildmat.2015.06.001

Johannesson, B., Utgenannt, P., Microstructural changes caused by carbonation of cement mortar, Cem. Concr. Res. 31(6), 925–931 (2001).

https://doi.org/10.1016/S0008-8846(01)00498-7

Jones, M. R., Dhir, R. K., Gill, J. P., Concrete surface treatment: Effect of exposure temperature on chloride diffusion resistance, Cem. Concr. Res. 25(1), 197–208 (1995).

https://doi.org/10.1016/0008-8846(94)00127-K

Kim, E. K., Won, J., Do, J. young, Kim, S. D., Kang, Y. S., Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants, J. Cult. Herit. 10(2), 214–221 (2009).

https://doi.org/10.1016/j.culher.2008.07.008

Kim, J., HU, C., WOO, R., SHAM, M., Moisture barrier characteristics of organoclay?epoxy nanocomposites, Compos. Sci. Technol. 65(5), 805–813 (2005).

https://doi.org/10.1016/j.compscitech.2004.10.014

Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O., Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8(5), 1185–1189 (1993).

https://doi.org/10.1557/JMR.1993.1185

Kong, X. M., Liu, H., Lu, Z. B., Wang, D. M., The influence of silanes on hydration and strength development of cementitious systems, Cem. Concr. Res. 67, 168–178 (2015).

https://doi.org/10.1016/j.cemconres.2014.10.008

Kumar, A. P., Depan, D., Singh Tomer, N., Singh, R. P., Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives, Prog. Polym. Sci. 34(6), 479–515 (2009).

https://doi.org/10.1016/j.progpolymsci.2009.01.002

Leung, C. K. Y., Zhu, H.-G., Kim, J.-K., Woo, R. S. C., Use of Polymer/Organoclay Nanocomposite Surface Treatment as Water/Ion Barrier for Concrete, J. Mater. Civ. Eng. 20(7), 484–492 (2008).

https://doi.org/10.1061/(asce)0899-1561(2008)20:7(484)

Li, G., Huang, X., Lin, J., Jiang, X., Zhang, X., Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour, Constr. Build. Mater. 200, 36–45 (2019).

https://doi.org/10.1016/j.conbuildmat.2018.12.093

Li, K., Wang, Y., Zhang, X., Wu, J., Wang, X., Zhang, A., Multifunctional magnesium oxychloride based composite with stable superhydrophobicity, self-luminescence and reusability, Constr Build Mater.

https://doi.org/10.1016/j.conbuildmat.2021.122978

Liu, J., Vipulanandan, C., Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack, Tunn. Undergr. Sp. Technol. 16(4), 311–321 (2001).

https://doi.org/10.1016/S0886-7798(01)00053-0

Liu, Z., Hansen, W., Effect of hydrophobic surface treatment on freeze-thaw durability of concrete, Cem. Concr. Compos. 69, 49–60 (2016).

https://doi.org/10.1016/j.cemconcomp.2016.03.001

Luan, Y., Asamoto, S., Experimental study on mortar with the addition of hydrophobic silicone oil for water absorption, strength, and shrinkage, Constr. Build. Mater. 367, 130323 (2023).

https://doi.org/10.1016/j.conbuildmat.2023.130323

Madduru, S. R. C., Shaik, K. S., Velivela, R., Karri, V. K., Hydrophilic and hydrophobic chemicals as self curing agents in self compacting concrete, J. Build. Eng. 28(May 2019), 101008 (2020).

https://doi.org/10.1016/j.jobe.2019.101008

Maggana, C., Pissis, P., Water sorption and diffusion studies in an epoxy resin system, J. Polym. Sci. Part B Polym. Phys. 37(11), 1165–1182 (1999).

https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E

Manoudis, P., Papadopoulou, S., Karapanagiotis, I., Tsakalof, A., Zuburtikudis, I., Panayiotou, C., Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments, J. Phys. Conf. Ser. 61(1), 1361–1365 (2007).

https://doi.org/10.1088/1742-6596/61/1/269

Maravelaki-Kalaitzaki, P., Kallithrakas-Kontos, N., Agioutantis, Z., Maurigiannakis, S., Korakaki, D., A comparative study of porous limestones treated with silicon-based strengthening agents, Prog. Org. Coatings 62(1), 49–60 (2008).

https://doi.org/10.1016/j.porgcoat.2007.09.020

Maryoto, A., Improving microstructures of concrete using Ca(C18H35O2)2, Procedia Eng. 125, 631–637 (2015).

https://doi.org/10.1016/j.proeng.2015.11.086

Maryoto, A., Gan, B. S., Hermanto, N. I. S., Setijadi, R., Effect of calcium stearate in the mechanical and physical properties of concrete with pcc and fly ash as binders, Materials (Basel).

https://doi.org/10.3390/ma13061394

Matziaris, K., Stefanidou, M., Karagiannis, G., Impregnation and superhydrophobicity of coated porous low-fired clay building materials, Prog. Org. Coatings 72(1–2), 181–192 (2011).

https://doi.org/10.1016/j.porgcoat.2011.03.012

Miliani, C., Velo-Simpson, M. L., Scherer, G. W., Particle-modified consolidants: A study on the effect of particles on sol-gel properties and consolidation effectiveness, J. Cult. Herit. 8(1), 1–6 (2007).

https://doi.org/10.1016/j.culher.2006.10.002

Mohammed, A., Sanjayan, J. G., Duan, W. H., Nazari, A., Incorporating graphene oxide in cement composites: A study of transport properties, Constr. Build. Mater. 84, 341–347 (2015).

https://doi.org/10.1016/j.conbuildmat.2015.01.083

Moloney, A. C., Kausch, H. H., Kaiser, T., Beer, H. R., Parameters determining the strength and toughness of particulate filled epoxide resins, J. Mater. Sci. 22(2), 381–393 (1987).

https://doi.org/10.1007/BF01160743

Mosquera, M. J., De Los Santos, D. M., Rivas, T., Sanmartín, P., Silva, B., New nanomaterials for protecting and consolidating stone, J. Nano Res. 8(11), 1–12 (2009).

https://doi.org/10.4028/www.scientific.net/JNanoR.8.1

Namoulniara, K., Mahieux, P. Y., Lux, J., Aït-Mokhtar, A., Turcry, P., Efficiency of water repellent surface treatment: Experiments on low performance concrete and numerical investigation with pore network model, Constr. Build. Mater. 227, 116638 (2019).

https://doi.org/10.1016/j.conbuildmat.2019.08.019

Nemati Chari, M., Naseroleslami, R., Shekarchi, M., The impact of calcium stearate on characteristics of concrete, Asian J. Civ. Eng. 20(7), 1007–1020 (2019).

https://doi.org/10.1007/s42107-019-00161-x

Orlikowski, J., Cebulski, S., Darowicki, K., Electrochemical investigations of conductive coatings applied as anodes in cathodic protection of reinforced concrete, Cem. Concr. Compos. 26(6), 721–728 (2004).

https://doi.org/10.1016/S0958-9465(03)00105-7

Otsuki, N., Miyazato, S., Yodsudjai, W., Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete, J. Mater. Civ. Eng. 15(5), 443–451 (2003).

https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)

Pan, X., Shi, C., Jia, L., Zhang, J., and Wu, L., Effect of Inorganic Surface Treatment on Air Permeability of Cement-Based Materials, Journal of Materials in Civil Engineering, 28(3), 1–8 (2016).

https://doi.org/10.1061/(asce)mt.1943-5533.0001424

Pan, X., Shi, Z., Shi, C., Ling, T. C., Li, N., A review on concrete surface treatment Part I: Types and mechanisms, Constr. Build. Mater. 132, 578–590 (2017).

https://doi.org/10.1016/j.conbuildmat.2016.12.025

Papadakis, V. G., Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cem. Concr. Res. 30(2), 291–299 (2000).

https://doi.org/10.1016/S0008-8846(99)00249-5

Pavlidou, S., Papaspyrides, C. D., A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci. 33(12), 1119–1198 (2008).

https://doi.org/10.1016/j.progpolymsci.2008.07.008

Pérez, C., Collazo, A., Izquierdo, M., Merino, P., Nóvoa, X. R., Characterisation of the barrier properties of different paint systems. Part II. Non-ideal diffusion and water uptake kinetics, Prog. Org. Coatings 37(3), 169–177 (1999).

https://doi.org/10.1016/S0300-9440(99)00073-9

Perrin, F. X., Merlatti, C., Aragon, E., Margaillan, A., Degradation study of polymer coating: Improvement in coating weatherability testing and coating failure prediction, Prog. Org. Coatings 64(4), 466–473 (2009).

https://doi.org/10.1016/j.porgcoat.2008.08.015

Petcherdchoo, A., Pseudo-coating model for predicting chloride diffusion into surface-coated concrete in tidal zone: Time-dependent approach, Cem. Concr. Compos. 74, 88–99 (2016).

https://doi.org/10.1016/j.cemconcomp.2016.08.009

Pigino, B., Leemann, A., Franzoni, E., Lura, P., Ethyl silicate for surface treatment of concrete - Part II: Characteristics and performance, Cem. Concr. Compos. 34(3), 313–321 (2012).

https://doi.org/10.1016/j.cemconcomp.2011.11.021

Qu, Z., Guo, S., Zheng, Y., Giakoumatos, E. C., Yu, Q., Voets, I. K., A simple method to create hydrophobic mortar using bacteria grown in liquid cultures, Constr. Build. Mater. 297, 123744 (2021).

https://doi.org/10.1016/j.conbuildmat.2021.123744

Quraishi, M. A., Kumar, V., Abhilash, P. P., Singh, B. N., Calcium stearate: A green corrosion inhibitor for steel in concrete environment, J. Mater. Environ. Sci. 2(4), 365–372 (2011).

Ramli, M., Tabassi, A. A., Hoe, K. W., Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions, Compos. Part B Eng. 55, 221–233 (2013).

https://doi.org/10.1016/j.compositesb.2013.06.022

Ruan, S., Chen, S., Lu, J., Zeng, Q., Liu, Y., Yan, D., Waterproof geopolymer composites modified by hydrophobic particles and polydimethylsiloxane, Compos. Part B Eng. 237, 109865 (2022).

https://doi.org/10.1016/j.compositesb.2022.109865

Russo, G. M., Simon, G. P., Incarnato, L., Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films, Macromolecules 39(11), 3855–3864 (2006).

https://doi.org/10.1021/ma052178h

Sakai, E., Sugita, J., Composite mechanism of polymer modified cement, Cem. Concr. Res. 25(1), 127–135 (1995).

https://doi.org/10.1016/0008-8846(94)00120-N

Sandrolini, F., Franzoni, E., Pigino, B., Ethyl silicate for surface treatment of concrete - Part I: Pozzolanic effect of ethyl silicate, Cem. Concr. Compos. 34(3), 306–312 (2012).

https://doi.org/10.1016/j.cemconcomp.2011.12.003

Scarfato, P., Di Maio, L., Fariello, M. L., Russo, P., Incarnato, L., Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement, Cem. Concr. Compos. 34(3), 297–305 (2012).

https://doi.org/10.1016/j.cemconcomp.2011.11.006

Scherer, G. W., Wheeler, G. S., Silicate consolidants for stone, Key Eng. Mater. 391, 1–25 (2009).

https://doi.org/10.4028/www.scientific.net/kem.391.1

Shaikh, F. U. A., Supit, S. W. M., Sarker, P. K., A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes, Mater. Des. 60, 433–442 (2014).

https://doi.org/10.1016/j.matdes.2014.04.025

Shen, C. H., Springer, G. S., Moisture Absorption and Desorption of Composite Materials, J. Compos. Mater. 10(1), 2–20 (1976).

https://doi.org/10.1177/002199837601000101

Shi, Z., Wang, Q., Li, X., Lei, L., Qu, L., Mao, J., Zhang, H., Utilization of super-hydrophobic steel slag in mortar to improve water repellency and corrosion resistance, J. Clean. Prod. 341, 130783 (2022).

https://doi.org/10.1016/j.jclepro.2022.130783

Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., Ahalawat, S., Beneficial role of nanosilica in cement based materials - A review, Constr. Build. Mater. 47, 1069–1077 (2013).

https://doi.org/10.1016/j.conbuildmat.2013.05.052

Sinha Ray, S., Okamoto, M., Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28(11), 1539–1641 (2003).

https://doi.org/10.1016/j.progpolymsci.2003.08.002

Sivasankar, A., Arul Xavier Stango, S., Vedalakshmi, R., Quantitative estimation on delaying of onset of corrosion of rebar in surface treated concrete using sealers, Ain Shams Eng. J. 4(4), 615–623 (2013).

https://doi.org/10.1016/j.asej.2013.01.007

Song, Q., Wang, Q., Xu, S., Mao, J., Li, X., Zhao, Y., Properties of water-repellent concrete mortar containing superhydrophobic oyster shell powder, Constr. Build. Mater. 337, 127423 (2022).

https://doi.org/10.1016/j.conbuildmat.2022.127423

Song, X. F., Wei, J. F., He, T. S., A novel method to improve sulfate resistance of concrete by surface treatment with superabsorbent resin synthesised in situ, Mag. Concr. Res. 60(1), 49–55 (2008).

https://doi.org/10.1680/macr.2007.00051

Sørensen, P. A., Kiil, S., Dam-Johansen, K., Weinell, C. E., Anticorrosive coatings: A review, J. Coatings Technol. Res. 6(2), 135–176 (2009).

https://doi.org/10.1007/s11998-008-9144-2

Suleiman, A. R., Soliman, A. M., Nehdi, M. L., Effect of surface treatment on durability of concrete exposed to physical sulfate attack, Constr. Build. Mater. 73, 674–681 (2014).

https://doi.org/10.1016/j.conbuildmat.2014.10.006

Szymańska, A., Dutkiewicz, M., Maciejewski, H., Palacz, M., Simple and effective hydrophobic impregnation of concrete with functionalized polybutadienes, Constr. Build. Mater. 315, 125624 (2022).

https://doi.org/10.1016/j.conbuildmat.2021.125624

Teng, L. W., Huang, R., Chen, J., Cheng, A., Hsu, H. M., A study of crystalline mechanism of penetration sealer materials, Materials (Basel). 7(1), 399–412 (2014).

https://doi.org/10.3390/ma7010399

Tian, L., Qiu, L. chao, Preparation and properties of integrally hydrophobic self-compacting rubberized concrete, Constr. Build. Mater. 338, 127641 (2022).

https://doi.org/10.1016/J.CONBUILDMAT.2022.127641

Tibbetts, C. M., Paris, J. M., Ferraro, C. C., Riding, K. A., Townsend, T. G., Relating water permeability to electrical resistivity and chloride penetrability of concrete containing different supplementary cementitious materials, Cem. Concr. Compos. 107(April 2019), 103491 (2020).

https://doi.org/10.1016/j.cemconcomp.2019.103491

Tittarelli, F., Moriconi, G., The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete, Corros. Sci. 52(9), 2958–2963 (2010).

https://doi.org/10.1016/j.corsci.2010.05.008

Tittarelli, F., Moriconi, G., Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete, Cem. Concr. Res. 41(6), 609–614 (2011).

https://doi.org/10.1016/j.cemconres.2011.03.011

Toutanji, H. A., Choi, H., Wong, D., Gilbert, J. A., Alldredge, D. J., Applying a polyurea coating to high-performance organic cementitious materials, Constr. Build. Mater. 38, 1170–1179 (2013).

https://doi.org/10.1016/j.conbuildmat.2012.09.041

Vaidya, S., Allouche, E. N., Electrokinetically deposited coating for increasing the service life of partially deteriorated concrete sewers, Constr. Build. Mater. 24(11), 2164–2170 (2010).

https://doi.org/10.1016/j.conbuildmat.2010.04.042

VanLandingham, M. R., Eduljee, R. F., Gillespie, J. W., Moisture Diffusion in Epoxy Systems, J. Appl. Polym. Sci. 71(5), 787–798 (1999).

https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A

Vipulanandan, C., Liu, J., Performance of polyurethane-coated concrete in sewer environment, Cem. Concr. Res. 35(9), 1754–1763 (2005).

https://doi.org/10.1016/j.cemconres.2004.10.033

Vipulanandan, C., Liu, J., Glass-fiber mat-reinforced epoxy coating for concrete in sulfuric acid environment, Cem. Concr. Res. 32(2), 205–210 (2002).

https://doi.org/10.1016/S0008-8846(01)00660-3

Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., Fang, Z., A review on ultra high performance concrete: Part II. Hydration, microstructure and properties, Constr. Build. Mater. 96, 368–377 (2015).

https://doi.org/10.1016/j.conbuildmat.2015.08.095

Wang, F., Lei, S., Ou, J., Li, W., Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar, Appl Surf Sci.

https://doi.org/10.1016/j.apsusc.2019.145016

Wang, M., Wang, Q., Mao, J., Xu, S., Shi, Z., Study on water-repellent and corrosion-resistant properties of cement mortar using superhydrophobic iron ore tailings, J. Build. Eng. 62, 105360 (2022).

https://doi.org/10.1016/j.jobe.2022.105360

Wathiq Hammodat, W., Investigate road performance using polymer modified concrete, Mater. Today Proc. 42(February), 2089–2094 (2021).

https://doi.org/10.1016/j.matpr.2020.12.290

Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., Cheeseman, C. R., Hydrophobic concrete using waste paper sludge ash, Cem. Concr. Res. 70, 9–20 (2015).

https://doi.org/10.1016/j.cemconres.2015.01.005

Woo, R. S. C., Chen, Y., Zhu, H., Li, J., Kim, J.-K., Leung, C. K. Y., Environmental degradation of epoxy–organoclay nanocomposites due to UV exposure. Part I: Photo-degradation, Compos. Sci. Technol. 67(15–16), 3448–3456 (2007).

https://doi.org/10.1016/j.compscitech.2007.03.004

Woo, R. S. C., Zhu, H., Chow, M. M. K., Leung, C. K. Y., Kim, J. K., Barrier performance of silane-clay nanocomposite coatings on concrete structure, Compos. Sci. Technol. 68(14), 2828–2836 (2008a).

https://doi.org/10.1016/j.compscitech.2007.10.028

Woo, R. S. C., Zhu, H., Leung, C. K. Y., Kim, J. K., Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties, Compos. Sci. Technol. 68(9), 2149–2155 (2008b).

https://doi.org/10.1016/j.compscitech.2008.03.020

Wu, H., Torabian Isfahani, F., Jin, W., Xu, C., Redaelli, E., Bertolini, L., Modification of properties of reinforced concrete through nanoalumina electrokinetic treatment, Constr. Build. Mater. 126, 857–867 (2016).

https://doi.org/10.1016/j.conbuildmat.2016.09.098

Wu, Y., Dong, L., Shu, X., Yang, Y., She, W., Ran, Q., A review on recent advances in the fabrication and evaluation of superhydrophobic concrete, Compos. Part B Eng. 237(March), 109867 (2022).

https://doi.org/10.1016/j.compositesb.2022.109867

Xu, Q., Zhan, S., Xu, B., Yang, H., Qian, X., Ding, X., Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of concrete, J. Wuhan Univ. Technol. Mater. Sci. Ed. 31(1), 139–145 (2016).

https://doi.org/10.1007/s11595-016-1343-6

Xue, X., Li, Y., Yang, Z., He, Z., Dai, J. G., Xu, L., Zhang, W., A systematic investigation of the waterproofing performance and chloride resistance of a self-developed waterborne silane-based hydrophobic agent for mortar and concrete, Constr. Build. Mater. 155, 939–946 (2017).

https://doi.org/10.1016/j.conbuildmat.2017.08.042

Yang, X. F., Tallman, D. E., Bierwagen, G. P., Croll, S. G., Rohlik, S., Blistering and degradation of polyurethane coatings under different accelerated weathering tests, Polym. Degrad. Stab. 77(1), 103–109 (2002).

https://doi.org/10.1016/S0141-3910(02)00085-X

Yin, B., Xu, T., Hou, D., Zhao, E., Hua, X., Han, K., Zhang, Y., Zhang, J., Superhydrophobic anticorrosive coating for concrete through in-situ bionic induction and gradient mineralization, Constr. Build. Mater. 257, 119510 (2020).

https://doi.org/10.1016/j.conbuildmat.2020.119510

Zhang, B., Li, Q., Ma, R., Niu, X., Yang, L., Hu, Y., Zhang, J., The influence of a novel hydrophobic agent on the internal defect and multi-scale pore structure of concrete, Materials (Basel). 14(3), 1–17 (2021a).

https://doi.org/10.3390/ma14030609

Zhang, B., Li, Q., Niu, X., Yang, L., Hu, Y., Zhang, J., Influence of a novel hydrophobic agent on freeze–thaw resistance and microstructure of concrete, Constr Build Mater.

https://doi.org/10.1016/j.conbuildmat.2020.121294

Zhang, C., Zhang, S., Yu, J., Kong, X., Water absorption behavior of hydrophobized concrete using silane emulsion as admixture, Cem. Concr. Res. 154, 106738 (2022).

https://doi.org/10.1016/j.cemconres.2022.106738

Zhang, Y., Li, S., Zhang, W., Chen, X., Hou, D., Zhao, T., Li, X., Preparation and mechanism of graphene oxide/isobutyltriethoxysilane composite emulsion and its effects on waterproof performance of concrete, Constr. Build. Mater. 208, 343–349 (2019).

https://doi.org/10.1016/j.conbuildmat.2019.03.015

Zhao, J., Gao, X., Chen, S., Lin, H., Li, Z., Lin, X., Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review, Compos. Part B Eng. 243(October 2021), 110104 (2022).

https://doi.org/10.1016/j.compositesb.2022.110104

Zhao, Y., Lei, L., Wang, Q., Li, X., Study of superhydrophobic concrete with integral superhydrophobicity and anti-corrosion property, Case Stud. Constr. Mater. 18(February), e01899 (2023).

https://doi.org/10.1016/j.cscm.2023.e01899

Zhao, Z., Qu, X., Li, J., Application of polymer modified cementitious coatings (PCCs) for impermeability enhancement of concrete, Constr. Build. Mater. 249, 118769 (2020).

https://doi.org/10.1016/j.conbuildmat.2020.118769

Zheng, H., Li, W., Ma, F., Kong, Q., The effect of a surface-applied corrosion inhibitor on the durability of concrete, Constr. Build. Mater. 37, 36–40 (2012).

https://doi.org/10.1016/j.conbuildmat.2012.07.007

Zheng, W., Chen, W. G., Feng, T., Li, W. Q., Liu, X. T., Dong, L. L., Fu, Y. Q., Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating, Prog Org Coatings.

https://doi.org/10.1016/j.porgcoat.2019.105389

Zhu, H., Li, Q., Ma, R., Yang, L., Hu, Y., Zhang, J., Water-repellent additive that increases concrete cracking resistance in dry curing environments, Constr. Build. Mater. 249, 1–10 (2020a).

https://doi.org/10.1016/j.conbuildmat.2020.118704

Zhu, J., Liao, K., A facile and low-cost method for preparing robust superhydrophobic cement block, Mater. Chem. Phys. 250(April), 123064 (2020b).

https://doi.org/10.1016/j.matchemphys.2020.123064

Zhu, Y.-G., Kou, S.-C., Poon, C.-S., Dai, J.-G., Li, Q.-Y., Influence of silane-based water repellent on the durability properties of recycled aggregate concrete, Cem. Concr. Compos. 35(1), 32–38 (2013).

https://doi.org/10.1016/j.cemconcomp.2012.08.008

Contact Us

Powered by

Powered by OJS