Open Access

Comprehensive Review of Biodiesel Production from Nonedible Feedstocks: Environmental Impacts and Sustainable Solutions

P. Sujin, Department of Mechanical Engineering, Maria College of Engineering and Technology, Thiruvattaru, TN, India Ajith J. Kings, ajithjkings@gmail.com
Department of Mechanical Engineering, St. Xavier’s Catholic College of Engineering, Nagercoil, TN, India
L. R. Monisha Miriam, Department of Biotechnology, Udaya School of Engineering, Vellamodi, TN, India A. Saravanan Saravanan Department of Mechanical Engineering, Ponjesly College of Engineering, Nagercoil, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 257-271

https://doi.org/10.13074/jent.2024.12.243860

PDF


Abstract

The pursuit of sustainable alternatives to fossil fuels has led to extensive research into biodiesel production and its compatibility with internal combustion (IC) engines. This review paper provides a comprehensive analysis of biodiesel synthesis methodologies using nonedible oil sources, focusing on their feasibility, efficiency, and environmental impact. Various nonedible oil feedstocks, such as Rubber, Jatropha, Pongamia, and Camelina, are evaluated for their potential as biodiesel precursors, considering factors such as availability, lipid content, and cultivation requirements. Furthermore, this review delves into the synthesis processes, including transesterification and esterification, highlighting recent advancements and challenges in improving reaction kinetics and yield. The characterization techniques employed to assess biodiesel quality, such as physicochemical properties and spectroscopic analysis, are also discussed. Additionally, the paper examines the compatibility of biodiesel derived from nonedible oils with IC engines, addressing issues related to engine performance, emissions, and durability. Comparative studies between biodiesel blends and conventional diesel fuel are presented, elucidating the effects on combustion characteristics, engine efficiency, and pollutant emissions. The potential of biodiesel to reduce greenhouse gas emissions and mitigate environmental pollution is explored, along with challenges associated with large-scale implementation and commercialization. In conclusion, this review provides valuable insights into the synthesis of biodiesel from nonedible oil sources and its compatibility with IC engines, offering a roadmap for future research directions and technology advancements in the pursuit of sustainable energy solutions.

Full Text

Reference


Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A. and Fayaz, H., Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renewable Sustainable Energy Rev., 18211–245 (2013).

https://doi.org/10.1016/j.rser.2012.10.013

Atapour, M. and Kariminia, H. R., Characterization and transesterification of Iranian bitter almond oil for biodiesel production, Appl. Energy, 88(7), 2377–2381 (2011).

https://doi.org/10.1016/j.apenergy.2011.01.014

Banapurmath, N. R., Tewari, P. G. and Hosmath, R. S., Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters, Renewable Energy, 33(9), 1982–1988 (2008).

https://doi.org/10.1016/j.renene.2007.11.012

Ban-Weiss, G. A., Chen, J. Y., Buchholz, B. A. and Dibble, R.W., A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory, Fuel Process. Technol., 88(7), 659–667 (2007).

https://doi.org/10.1016/j.fuproc.2007.01.007

Binhweel, F., Bahadi, M., Pyar, H., Alsaedi, A., Hossain, S. and Ahmad, M. I., A comparative review of some physicochemical properties of biodiesels synthesized from different generations of vegetative oils, J. Phys.: Conf. Ser., 1900(1), 012009 (2021).

https://doi.org/10.1088/1742-6596/1900/1/012009

Bosma, R., Van, S. W. A., Tramper, J. and Wijffels, R. H., Ultrasound, a new separation technique to harvest microalgae, J. Appl. Phycol., 15(2/3), 143–153 (2003).

https://doi.org/10.1023/A:1023807011027

Chakraborty, R., Bepari, S. and Banerjee, A., Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis, Bioresour. Technol., 102(3), 3610–3618 (2011).

https://doi.org/10.1016/j.biortech.2010.10.123

Chauhan, B. S., Kumar, N. and Cho, H. M., A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends, Energy, 37(1), 616–622 (2012).

https://doi.org/10.1016/j.energy.2011.10.043

Daramola, M. O., Mtshali, K., Senokoane, L. and Fayemiwo, O. M., Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst: A statistical approach, J. Taibah Univ. Sci., 10(5), 675–684 (2016).

https://doi.org/10.1016/j.jtusci.2015.07.008

Demirbas, A., Importance of biodiesel as transportation fuel, Energy Policy, 35(9), 4661–4670 (2007).

https://doi.org/10.1016/j.enpol.2007.04.003

Dorado, M., Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil, Fuel, 82(11), 1311–1315 (2003).

https://doi.org/10.1016/S0016-2361(03)00034-6

Elendu, C. C., Wang, Z., Aleem, R. D., Cao, C., Duan, P. G., Ramzan, N. and Hazzan, O. O., Environmental impact and performance evaluation of calabash seed oil biodiesel, Biomass Bioenergy, 183107152 (2024).

https://doi.org/10.1016/j.biombioe.2024.107152

Felizardo, P., Baptista, P., Menezes, J. C. and Correia, M. J. N., Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel, Anal. Chim. Acta, 595(1–2), 107–113 (2007).

https://doi.org/10.1016/j.aca.2007.02.050

Ferreira, M. G., Germano, D. S. I., Luiz, B. D. O. A., Luthierre, G. C. A., Da, S. M. K., Thálysson, T. C. F., Erick, D. S. S. J., Rafael, D. A. F. Í., Guimarães, R. T., Bussons, R. V. R., Cristina, F. D. C. S., Simão, N. F., De, F. S. J., Karolinny, C. D. L. R., Cristiane, M. D. S. M. and Dos, S. J.C.S., Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects, Algal Res., 62, 102616 (2022).

https://doi.org/10.1016/j.algal.2021.102616

Fontaras, G., Karavalakis, G., Kousoulidou, M., Tzamkiozis, T., Ntziachristos, L., Bakeas, E., Stournas, S. and Samaras, Z., Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles, Fuel, 88(9), 1608–1617 (2009).

https://doi.org/10.1016/j.fuel.2009.02.011

Gogoi, T. K. and Baruah, D. C., The use of Koroch seed oil methyl ester blends as fuel in a diesel engine, Appl. Energy, 88(8), 2713–2725 (2011).

https://doi.org/10.1016/j.apenergy.2011.02.023

Gumus, M., A comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fueled direct injection compression ignition engine, Fuel, 89(10), 2802–2814 (2010).

https://doi.org/10.1016/j.fuel.2010.01.035

Gürü, M., Koca, A., Can, Ö., Çınar, C. and Şahin, F., Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine, Renewable Energy, 35(3), 637–643 (2010).

https://doi.org/10.1016/j.renene.2009.08.011

Gzate, Y., Ewnetu, M., Genet, N., Yifter, T., Asratie, A. and Engdaw, G., Performance testing of moringa oleifera seed oil biodiesel with additives in diesel engine, Heliyon, 10(4), e26293 (2024).

https://doi.org/10.1016/j.heliyon.2024.e26293

Haldar, S. K., Ghosh, B. B. and Nag, A., Utilization of unattended Putranjiva roxburghii non-edible oil as fuel in diesel engine, Renewable Energy, 34(1), 343–347 (2009).

https://doi.org/10.1016/j.renene.2008.03.008

Haşimoğlu, C., Ciniviz, M., Özsert, İ., İçingür, Y., Parlak, A. and Sahir Salman, M., Performance characteristics of a low heat rejection diesel engine operating with biodiesel, Renewable Energy, 33(7), 1709–1715 (2008).

https://doi.org/10.1016/j.renene.2007.08.002

Hirano, A., Hon-Nami, K., Kunito, S., Hada, M. and Ogushi, Y., Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance, Catal. Today, 45(1–4), 399–404 (1998).

https://doi.org/10.1016/S0920-5861(98)00275-2

Imahara, H., Minami, E. and Saka, S., Thermodynamic study on cloud point of biodiesel with its fatty acid composition☆, Fuel, 85(12–13), 1666–1670 (2006).

https://doi.org/10.1016/j.fuel.2006.03.003

Kafuku, G. and Mbarawa, M., Alkaline catalyzed biodiesel production from moringa oleifera oil with optimized production parameters, Appl. Energy, 87(8), 2561–2565 (2010).

https://doi.org/10.1016/j.apenergy.2010.02.026

Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. K., Lee, J. S. and Lee, K. Y., Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catal. Today, 93–95315–320 (2004).

https://doi.org/10.1016/j.cattod.2004.06.007

Kumar, R., Tiwari, P. and Garg, S., Alkali transesterification of linseed oil for biodiesel production, Fuel, 104553–560 (2013).

https://doi.org/10.1016/j.fuel.2012.05.002

Kwon, E. E., Jeon, E. C., Yi, H. and Kim, S., Transforming duck tallow into biodiesel via noncatalytic transesterification, Appl. Energy, 11620–25 (2014).

https://doi.org/10.1016/j.apenergy.2013.11.043

Ma, F. and Hanna, M. A., Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1, Bioresour. Technol., 70(1), 1–15 (1999).

https://doi.org/10.1016/S0960-8524(99)00025-5

Madhu, D., Chavan, S. B., Singh, V., Singh, B. and Sharma, Y. C., An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst, Bioresour. Technol., 214210–217 (2016).

https://doi.org/10.1016/j.biortech.2016.04.055

Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C. and Chong, W. T., Enzymatic transesterification for biodiesel production: a comprehensive review, RSC Adv., 6(65), 60034–60055 (2016).

https://doi.org/10.1039/C6RA08062F

Mumtaz, M. W., Adnan, A., Mahmood, Z., Mukhtar, H., Malik, M. F., Qureshi, F. A. and Raza, A., Biodiesel From Waste Cooking Oil: Optimization of Production and Monitoring of Exhaust Emission Levels From its Combustion in a Diesel Engine, Int. J. Green Energy, 9(7), 685–701 (2012).

https://doi.org/10.1080/15435075.2011.625583

Murugesan, A., Subramaniam, D., Vijayakumar, C., Avinash, A. and Nedunchezhian, N., Analysis on performance, emission and combustion characteristics of diesel engine fueled with methyl–ethyl esters, J. Renewable Sustainable Energy, 4(6), 063116 (2012). https://doi.org/10.1063/1.4767911

Öner, C. and Altun, Ş., Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine, Appl. Energy, 86(10), 2114–2120 (2009).

https://doi.org/10.1016/j.apenergy.2009.01.005

Ong, H. C., Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Chong, W. T. and Boosroh, M. H., Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra, Energy Convers. Manage., 73245–255 (2013).

https://doi.org/10.1016/j.enconman.2013.04.011

Patil, V., Tran, K. Q. and Giselrød, H. R., Towards Sustainable Production of Biofuels from Microalgae, Int. J. Mol. Sci., 9(7), 1188–1195 (2008).

https://doi.org/10.3390/ijms9071188

Pramanik, K., Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine, Renewable Energy, 28(2), 239–248 (2003).

https://doi.org/10.1016/S0960-1481(02)00027-7

Rodrigues, A., Bordado, J. C. and Santos, R. G. D., Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways, Energies, 10(11), 1817 (2017).

https://doi.org/10.3390/en10111817

Saleh, H. E., Experimental study on diesel engine nitrogen oxide reduction running with jojoba methyl ester by exhaust gas recirculation, Fuel, 88(8), 1357–1364 (2009).

https://doi.org/10.1016/j.fuel.2009.01.023

Saravanan, P., Kumar, N. M., Ettappan, M., Dhanagopal, R. and Vishnupriyan, J., Effect of exhaust gas re-circulation on performance, emission and combustion characteristics of ethanol-fueled diesel engine, Case Stud. Therm. Eng., 20100643 (2020).

https://doi.org/10.1016/j.csite.2020.100643

Silitonga, A. S., Mahlia, T. M. I., Ong, H. C., Riayatsyah, T. M. I., Kusumo, F., Ibrahim, H., Dharma, S. and Gumilang, D., A comparative study of biodiesel production methods for Reutealis trisperma biodiesel, Energy Sources Part A, 39(20), 2006–2014 (2017).

https://doi.org/10.1080/15567036.2017.1399174

Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T. and Boosroh, M. H., Overview properties of biodiesel diesel blends from edible and non-edible feedstock, Renewable Sustainable Energy Rev., 22346–360 (2013).

https://doi.org/10.1016/j.rser.2013.01.055

Singh, N., Saluja, R. K., Rao, H. J., Kaushal, R., Gahlot, N. K., Suyambulingam, I., Sanjay, M. R., Divakaran, D. and Siengchin, S., Progress and facts on biodiesel generations, production methods, influencing factors, and reactors: A comprehensive review from 2000 to 2023, Energy Convers. Manage., 302118157 (2024).

https://doi.org/10.1016/j.enconman.2024.118157

Sivaramakrishnan, K. and Ravikumar, P., Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel, Int. J. Environ. Sci. Technol., 11(4), 949–958 (2014).

https://doi.org/10.1007/s13762-013-0273-5

Srivastava, A. and Prasad, R., Triglycerides-based diesel fuels, Renewable Sustainable Energy Rev., 4(2), 111–133 (2000). https://doi.org/10.1016/S1364-0321(99)00013-1

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S. and Lin, L., Catalysis in biodiesel production—a review, Clean Energy, 3(1), 2–23 (2019).

https://doi.org/10.1093/ce/zky020

Tsolakis, A., Megaritis, A., Wyszynski, M. and Theinnoi, K., Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation), Energy, 32(11), 2072–2080 (2007).

https://doi.org/10.1016/j.energy.2007.05.016

Vedaraman, N., Puhan, S., Nagarajan, G., Ramabrahmam, B. V. and Velappan, K. C., Methyl ester of Sal oil (Shorea robusta) as a substitute to diesel fuel—A study on its preparation, performance and emissions in direct injection diesel engine, Ind. Crops Prod., 36(1), 282–288 (2012).

https://doi.org/10.1016/j.indcrop.2011.09.003

Xie, W. and Zhao, L., Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil, Energy Convers. Manage., 7934–42 (2014).

https://doi.org/10.1016/j.enconman.2013.11.041

Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F., Wang, X. and Liu, T., Biotechnological preparation of biodiesel and its high-valued derivatives: A review, Appl. Energy, 1131614–1631 (2014).

https://doi.org/10.1016/j.apenergy.2013.09.029

Yusuff, A. S., Dada, T., Olateju, I. I., Azeez, T. M. and Azeez, S. O., Experimental investigation of influence of methyl, ethyl and methyl-ethyl ester blends of used cooking oil on engine performances and emissions, Energy Convers. Manage.: X, 17100346 (2023).

https://doi.org/10.1016/j.ecmx.2023.100346

Zhihao, M., Xiaoyu, Z., Junfa, D., Xin, W., Bin, X. and Jian, W., Study on Emissions of a DI Diesel Engine Fuelled with Pistacia Chinensis Bunge Seed Biodiesel-Diesel Blends, Procedia Environ. Sci., 111078–1083 (2011).

https://doi.org/10.1016/j.proenv.2011.12.163

Contact Us

Powered by

Powered by OJS