Open Access

Morphological Controlled BaSO4 Nanostructures by Solvents and Molar Concentrations

B. Ananda Kumar, Department of Chemistry, Sri Y.N. College, Narsapur, West Godavari, AP, India S. Saravanan, shasa86@gmail.com
Department of Science & Humanities, Swarnandhra College of Engineering and Technology, Seetharampuram, Narsapur, West Godavari, AP, India
K. Ramanjaneyulu, Department of Science & Humanities, Swarnandhra College of Engineering and Technology, Seetharampuram, Narsapur, West Godavari, AP, India S. B. Ronald Department of Chemistry, Sri Y.N. College, Narsapur, West Godavari, AP, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 20-26

https://doi.org/10.13074/jent.2024.12.243858

PDF


Abstract

The aim of the present work is to synthesize environmentally friendly nanomaterials, which are viable and better alternative method for distinct applications. The co-precipitation method is used for the preparation of BaSO4 nanostructures with the influence of Azedarach indica leaf extracts as organic stabilizing agents. For synthesizing nanostructures, two different solvents (Ethanol and deionized water) were taken along with distinct molar concentration (0.05 and 1.0 M) are investigated by various characterization techniques. Initially, the XRD pattern revealing the orthorhombic phase structure was well-matched with JCPDS file. Next, FTIR transmission spectrum confirmed the presence of Ba and SO4 stretching vibration molecules. The morphological studies of SEM evidenced at 1 and 2 µm scale level the successful preparation of rice grain (or nanorods) like nanostructures with the average diameter of ~73.5 nm (ethanol) and 222 nm (DI water). Also, the prepared sample elements were evidenced by the EDX spectra. This employed experimental study revealed that the DI water solvent with higher molar concentrations plays a crucial role in the morphology and size of BaSO4 nanostructures. In the future, these nanocrystalline materials could be find applications in antimicrobial activities.

Full Text

Reference


Abdulkareem, A. S., Hamzat, W. A., Tijani, J. O., Egbosiuba, T. C., Mustapha, S., Abubakre, O. K., Okafor, B. O. and Babayemi, A. K., Isotherm, kinetics, thermodynamics and mechanism of metal ions adsorption from electroplating wastewater using treated and functionalized carbon nanotubes, J. Environ. Chem. Eng., 11(1), 109180 (2023).

https://doi.org/10.1016/j.jece.2022.109180

Adityawarman, D., Voigt, A., Veit, P. and Sundmacher, K., Precipitation of BaSO4 nanoparticles in a non-ionic microemulsion: Identification of suitable control parameters, Chem. Eng. Sci., 60(12), 3373–3381 (2005).

https://doi.org/10.1016/j.ces.2004.12.050

Amiri, O., Abdulla, G. L., Burhan, C. M., Hussein, H. H., Azhdarpour, A. M., Saadat, M., Joshaghani, M. and Mahmood, P. H., Boost piezocatalytic activity of BaSO4 by coupling it with BaTiO3, Cu: BaTiO3, Fe: BaTiO3, S: BaTiO3 and modify them by sucrose for water purification, Sci. Rep., 12(1), 20792 (2022).

https://doi.org/10.1038/s41598-022-24992-y

Bala, H., Fu, W., Guo, Y., Zhao, J., Jiang, Y., Ding, X., Yu, K., Li, M. and Wang, Z., In situ preparation and surface modification of barium sulfate nanoparticles, Colloids Surf. Physicochem. Eng. Asp., 274(1–3), 71–76 (2006).

https://doi.org/10.1016/j.colsurfa.2005.08.050

Chand, P., Gaur, A., Kumar, A. and Gaur, U. K., Effect of NaOH molar concentration on morphology, optical and ferroelectric properties of hydrothermally grown CuO nanoplates, Mater. Sci. Semicond. Process., 3872–80 (2015).

https://doi.org/10.1016/j.mssp.2015.04.006

Chen, L., Wang, J., Wang, H., Zheng, Y., Qi, Z., Chang, G., Xu, S., Li, R., Wu, T. and Xu, W., Green Synthesis of Barium Sulfate Particles Using Plant Extracts, MATEC Web Conf., 6702017 (2016).

https://doi.org/10.1051/matecconf/20166702017

Gholami, T., Seifi, H., Dawi, E. A., Pirsaheb, M., Seifi, S., Aljeboree, A. M., Hamoody, A. H. M., Altimari, U.S., Ahmed Abass, M. and Salavati-Niasari, M., A review on investigating the effect of solvent on the synthesis, morphology, shape and size of nanostructures, Mater. Sci. Eng. B, 304117370 (2024).

https://doi.org/10.1016/j.mseb.2024.117370

Gupta, A., Singh, P. and Shivakumara, C., Synthesis of nanoparticles by precipitation method using sodium hexa metaphosphate as a stabilizer, Solid State Commun., 150(9–10), 386–388 (2010).

https://doi.org/10.1016/j.ssc.2009.11.039

Jha, M., Ansari, S. and Shimpi, N.G., Novel sonochemical green approach for synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract, Bull. Mater. Sci., 42(1), 22 (2019).

https://doi.org/10.1007/s12034-018-1724-x

Jones, F., Jones, P., Ogden, M. I., Richmond, W. R., Rohl, A. L. and Saunders, M., The interaction of EDTA with barium sulfate, J. Colloid Interface Sci., 316(2), 553–561 (2007).

https://doi.org/10.1016/j.jcis.2007.09.005

Jones, F., Oliviera, A., Parkinson, G. M., Rohl, A. L., Stanley, A. and Upson, T., The effect of calcium ions on the precipitation of barium sulphate 1: calcium ions in the absence of organic additives, J. Cryst. Growth, 262(1–4), 572–580 (2004).

https://doi.org/10.1016/j.jcrysgro.2003.10.069

Koao, L. F., Dejene, B. F., Hone, F. G., Swart, H. C., Motloung, S. V., Motaung, T. E. and Pawade, V. B., Effects of octadecylammine molar concentration on the structure, morphology and optical properties of ZnO nanostructure prepared by homogeneous precipitation method, J. Lumin., 200206–215 (2018).

https://doi.org/10.1016/j.jlumin.2018.04.024

Kucher, M., Beierlein, T. and Kind, M., In situ WAXS synchrotron radiation study on particle formation of precipitated barium sulfate, AIChE J., 54(5), 1178–1188 (2008).

https://doi.org/10.1002/aic.11450

Kipp, K., Lacmann, R., Reichelt, M., Schr¨oder, W., Tailor-made additives to influence the habit of barite (BaSO4) obtained by precipitation, Chem. Eng. Technol., 19, 543-549 (1996).

https://doi.org/10.1002/ceat.270190612

Manteghian, M. and Sameni, A., Synthesis and Nucleation Mechanism Recognition of BaSO4 Nanoparticle in the Presence of Biopolymers, J. Nanostructures, 9(2), (2019).

https://doi.org/10.22052/JNS.2019.02.013

Meagher, M. J., Leone, B., Turnbull, T. L., Ross, R. D., Zhang and Roeder, R. K., Dextran-encapsulated barium sulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent, J. Nanoparticle Res., 15(12), 2146 (2013).

https://doi.org/10.1007/s11051-013-2146-8

Mochahari, P. K. Influence of molar concentration on structural, morphological, optical and luminescence of polyvinyl alcohol-capped nanostructured ZnS films, Int. J. Mod. Phys. B, 38(24), 2450330 (2024).

https://doi.org/10.1142/S0217979224503302

Nagaraja, B. M., Abimanyu, H., Jung, K. D. and Yoo, K. S., Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization, J. Colloid Interface Sci., 316(2), 645–651 (2007).

https://doi.org/10.1016/j.jcis.2007.09.004

Nandakumar, N. and Kurian, P., Chemosynthesis of monodispersed porous BaSO4 nano powder by polymeric template process and its characterisation, Powder Technol., 22451–56 (2012).

https://doi.org/10.1016/j.powtec.2012.02.022

Saravanan. S., Anandakumar., B., Ronald. S. B. and Udaya, B. R. Ch., Green Synthesis of Barium Sulphate Nanostructures Using Azadirachta indica Leaf Extract, J. Environ. Nanotechnol., 13(1), 92–96 (2024).

https://doi.org/10.13074/jent.2024.03.241511

Shen, Y., Li, C., Zhu, X., Xie, A., Qiu, L. and Zhu, J., Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids, J. Chem. Sci., 119(4), 319–324 (2007).

https://doi.org/10.1007/s12039-007-0043-3

Wang, F., Xu, G., Zhang, Z. and Xin, X., Morphology control of barium sulfate by PEO-PPO-PEO as crystal growth modifier, Colloids Surf. Physicochem. Eng. Asp., 259(1–3), 151–154 (2005).

https://doi.org/10.1016/j.colsurfa.2005.02.025

Wang, Q.-A., Wang, J. X., Li, M., Shao, L., Chen, J. F., Gu, L. and An, Y. T., Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor, Chem. Eng. J., 149(1–3), 473–478 (2009).

https://doi.org/10.1016/j.cej.2009.02.018

Wang, T., Reinecke, A. and Cölfen, H., In Situ Investigation of Complex BaSO4 Fiber Generation in the Presence of Sodium Polyacrylate. 2. Crystallization Mechanisms, Langmuir, 22(21), 8986–8994 (2006).

https://doi.org/10.1021/la060985j

Wu, G., Zhou, H. and Zhu, S., Precipitation of barium sulfate nanoparticles via impinging streams, Mater. Lett., 61(1), 168–170 (2007).

https://doi.org/10.1016/j.matlet.2006.04.096

Yu, J., Liu, S. and Cheng, B., Effects of PSMA additive on morphology of barite particles, J. Cryst. Growth, 275(3–4), 572–579 (2005).

https://doi.org/10.1016/j.jcrysgro.2004.12.033

Zhao, X., Yu, J., Tang, H., and Lin, J., Facile synthesis of monodispersed barium sulphate particles via an in situ templated process, J. Colloid Interface Sci., 311(1), 89–93 (2007).

https://doi.org/10.1016/j.jcis.2007.02.071

Contact Us

Powered by

Powered by OJS