Open Access

Impact Loading on Polymer Nanocomposites - A Comprehensive Review

R. Suresh Kumar, rsk777mech@gmail.com
Center for Advanced Material and Testing (DST-FIST Sponsored), Sri Eshwar College of Engineering, Coimbatore, TN, India
M. Yuvaperiyasamy, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TN, India R. Sathish, Department of Mechanical Engineering, Karpagam College of Engineering, Coimbatore, TN, India P. K. Miniappan, Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, TN, India R. Premkumar, Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Tahalavapalayam, Karur, TN, India P. Arivalagan Department of Mechanical Engineering, Sri Sakthi Institute of Engineering and Technology, Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 424-434

https://doi.org/10.13074/jent.2024.09.243821

PDF


Abstract

In recent days, the application of polymer nanocomposites (NC) has grown exponentially due to its varied applications and efficacy. However, it is also associated with various challenges and need of optimal solutions to address the same. Excellent properties in the area of high strain rate applications are usually addressed during fabrication of nanocomposites using graphene, nano fillers, nano clay and carbon nano tubes. Such NC offer good properties associated with thermal stability and unique desirable properties making them excellent replacements for conventional materials used so far. Their applications are found in defense, space and automobile sectors. Though NC have numerous positive characteristics, the reason behind their failure mechanism under loading conditions with static and dynamic is unanswered or not comprehensively clear. This article enumerates the collective review of the challenges and solutions addressed by various researchers. It includes techniques used for characterizing nanocomposites with respect to failure governing mechanism for both organic and inorganic NC.

Full Text

Reference


Bandaru, A. K., Vetiyatil, L. and Ahmad, S., The effect of hybridization on the ballistic impact behavior of hybrid composite armors, Compos. B Eng., 76, 300–319 (2015).

https://doi.org/10.1016/j.compositesb.2015.03.012

Boddu, V. M., Brenner, M. W., Patel, J. S., Kumar, A., Mantena, P. R., Tadepalli, T. and Pramanik, B., Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes, Compos. B Eng., 88, 44–54 (2016).

https://doi.org/10.1016/j.compositesb.2015.10.028

Bortz, D. R., Heras, E. G. and Martin-Gullon, I., Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites, Macromol., 45(1), 238–245 (2012).

https://doi.org/10.1021/ma201563k

Bresciani, L. M., Manes, A., Ruggiero, A., Iannitti, G. and Giglio, M., Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: Macro-homogeneous and Meso-heterogeneous approaches, Compos. B Eng., 88, 114–130 (2016).

https://doi.org/10.1016/j.compositesb.2015.10.039

Brownson, D. A. C., Kampouris, D. K. and Banks, C. E., An overview of graphene in energy production and storage applications, J. Power Sources, 196(11), 4873–4885 (2011).

https://doi.org/10.1016/j.jpowsour.2011.02.022

de-Borbón, F. and Ambrosini, D., Dynamic response of composites sandwich plates with carbon nanotubes subjected to blast loading, Compos. B Eng., 45(1), 466–473 (2013).

https://doi.org/10.1016/j.compositesb.2012.07.035

Falvo, M. R., Clary, G. J., Taylor, R. M., Chi, V., Brooks Jr, F. P., Washburn, S. and Superfine, R., Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582–584 (1997).

https://doi.org/10.1038/39282

Faur-Csukat, G., A study on the ballistic performance of composites, Macromol. Symp., 239(1), 217–226 (2006).

https://doi.org/10.1002/masy.200690100

Felix Sahayaraj, A., Joy Prabu, H., Maniraj, J., Kannan, M., Bharathi, M., Diwahar, P. and Salamon, J., Metal--organic frameworks (MOFs): the next generation of materials for catalysis, gas storage, and separation, J. Inorg. Organomet. Polym. Mater., 33(7), 1757–1781 (2023).

https://doi.org/10.1007/s10904-023-02657-1

Field, J. E., Walley, S. M., Proud, W. G., Goldrein, H. T. and Siviour, C. R., Review of experimental techniques for high rate deformation and shock studies, Int. J. Impact Eng., 30(7), 725–775 (2004).

https://doi.org/10.1016/j.ijimpeng.2004.03.005

Gómez-del, R. T., Rodríguez, J. and Pearson, R. A., Compressive properties of nanoparticle modified epoxy resin at different strain rates, Compos. B Eng., 57, 173-179 (2014).

https://doi.org/10.1016/j.compositesb.2013.10.002

Guo, Y. and Li, Y., Quasi-static/dynamic response of SiO2--epoxy nanocomposites, Mater. Sci. Eng. A, 458(1–2), 330–335 (2007).

https://doi.org/10.1016/j.msea.2007.02.011

Han, Z. and Fina, A., Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci., 36(7), 914–944 (2011).

https://doi.org/10.1016/j.progpolymsci.2010.11.004

Hasanzadeh, M., Ansari, R. and Hassanzadeh-Aghdam, M. K., Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes, Mech. Mater., 129, 63–79 (2019).

https://doi.org/10.1016/j.mechmat.2018.11.003

Hassanzadeh-Aghdam, M. K. and Ansari, R., Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs, Int. J. Mech. Mater. Des., 15, 471–488 (2019).

https://doi.org/10.1007/s10999-018-9418-5

Hazell, P. J., Cowie, A., Kister, G., Stennett, C. and Cooper, G. A., Penetration of a woven CFRP laminate by a high velocity steel sphere impacting at velocities of up to 1875 m/s, Int. J. Impact Eng., 36(9), 1136–1142 (2009).

https://doi.org/10.1016/j.ijimpeng.2008.12.001

Hopmann, C. and Klein, J., Determination of strain rate dependent material data for FEA crash simulation of polymers using digital image correlation, Comput. Mater. Sci., 100, 181–190 (2015).

https://doi.org/10.1016/j.commatsci.2015.01.021

Hucker, M., Bond, I., Bleay, S. and Haq, S., Investigation into the behaviour of hollow glass fibre bundles under compressive loading, Compos. - A: Appl. Sci. Manuf., 34(11), 1045–1052 (2003).

https://doi.org/10.1016/S1359-835X(03)00238-0

Iyyadurai, J., Arockiasamy, F. S., Manickam, T. S., Suyambulingam, I., Siengchin, S., Appadurai, M. and Raj, E. F. I., Revolutionizing polymer composites: boosting mechanical strength, thermal stability, water resistance, and sound absorption of cissus quadrangularis stem fibers with nano silica, Silicon, 15(15), 6407–6419 (2023).

https://doi.org/10.1007/s12633-023-02510-7

Jiang, B., Guo, Y., Kim, J., Whitten, A. E., Wood, K., Kani, K., Rowan, A. E., Henzie, J. and Yamauchi, Y., Mesoporous metallic iridium nanosheets, J. Am. Chem. Soc., 140(39), 12434–12441 (2018).

https://doi.org/10.1021/jacs.8b05206

Kumar, A., Sharma, K. and Dixit, A. R., A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications, J. Mater. Sci., 54(8), 5992–6026 (2019).

https://doi.org/10.1007/s10853-018-03244-3

Kumar, A., Sharma, K. and Dixit, A. R., A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation, Mol. Simul., 46(2), 136–154 (2020).

https://doi.org/10.1080/08927022.2019.1680844

Kumar, R. M., Sharma, S. K., Kumar, B. V. M. and Lahiri, D., Effects of carbon nanotube aspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite, Compos. - A: Appl. Sci. Manuf., 76, 62–72 (2015).

https://doi.org/10.1016/j.compositesa.2015.05.007

Kumar, R. P., Muthukrishnan, M. and Sahayaraj, A. F., Experimental investigation on jute/snake grass/kenaf fiber reinforced novel hybrid composites with annona reticulata seed filler addition, Mater. Res. Express, 9(9), 95304 (2022).

https://doi.org/10.1088/2053-1591/ac92ca

Kumar, R. and Parashar, A., Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review, Nanoscale, 8(1), 22–49 (2016).

https://doi.org/10.1039/C5NR06917C

Li, C. and Chou, T.W., A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct., 40(10), 2487–2499 (2003).

https://doi.org/10.1016/S0020-7683(03)00056-8

Lim, A. S., An, Q., Chou, T.W. and Thostenson, E. T., Mechanical and electrical response of carbon nanotube-based fabric composites to Hopkinson bar loading, Compos. Technol., 71(5), 616–621 (2011).

https://doi.org/10.1016/j.compscitech.2010.12.025

Ma, P. C., Siddiqui, N. A., Marom, G. and Kim, J. K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Compos. - A: Appl. Sci. Manuf., 41(10), 1345–1367 (2010).

https://doi.org/10.1016/j.compositesa.2010.07.003

Ma, P., Zhang, F., Gao, Z., Jiang, G. and Zhu, Y., Transverse impact behaviors of glass warp-knitted fabric/foam sandwich composites through carbon nanotubes incorporation, Compos. B Eng., 56, 847–856 (2014).

https://doi.org/10.1016/j.compositesb.2013.09.013

Ma, Z. D., Sun, C., Cui, Y., Liu, Y., Hulbert, G. M., Raju, B. and Rostam-Abadi, F., Simulation and Test of Nanocomposites for Application in the Army, The 27th Army Science Conference, Orlando, FL, (2010).

Maksimkin, A. V, Kaloshkin, S. D., Kaloshkina, M. S., Gorshenkov, M. V, Tcherdyntsev, V. V, Ergin, K. S. and Shchetinin, I. V., Ultra-high molecular weight polyethylene reinforced with multi-walled carbon nanotubes: Fabrication method and properties, J. Alloys Compd., 536, S538-S540 (2012).

https://doi.org/10.1016/j.jallcom.2012.01.151

Mani, V., Krishnaswamy, K., Arockiasamy, F. S. and Manickam, T. S., Mechanical and dielectric properties of Cissus Quadrangularis fiber-reinforced epoxy/TiB2 hybrid composites, Int. Polym. Process., 38(4), 435–446 (2023).

https://doi.org/10.1515/ipp-2022-4321

Mata-Diaz, A., Pernas-Sánchez, J., Artero-Guerrero, J. A., Varas, D. and López-Puente, J., Numerical simulations of high velocity impacts of composite fragments, Procedia Eng., 197, 140–147 (2017).

https://doi.org/10.1016/j.proeng.2017.08.090

Miao, Y. G., Liu, H. Y., Suo, T., Mai, Y. W., Xie, F. Q. and Li, Y. L., Effects of strain rate on mechanical properties of nanosilica/epoxy, Compos. B Eng., 96, 119–124 (2016).

https://doi.org/10.1016/j.compositesb.2016.04.008

Moeini, M., Barbaz Isfahani, R., Saber-Samandari, S. and Aghdam, M. M., Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene--epoxy nanocomposites, Mol. Simul., 46(6), 476–486 (2020).

https://doi.org/10.1080/08927022.2020.1729983

Naik, N. K., Pandya, K. S., Kavala, V. R., Zhang, W. and Koratkar, N. A., Alumina nanoparticle filled epoxy resin: High strain rate compressive behavior, Polym. Eng. Sci., 54(12), 2896–2901 (2014).

https://doi.org/10.1002/pen.23850

Naik, N. K. and Shrirao, P., Composite structures under ballistic impact, Compos. Struct., 66(1–4), 579–590 (2004).

https://doi.org/10.1016/j.compstruct.2004.05.006

Nandi, M., Mondal, J., Sarkar, K., Yamauchi, Y. and Bhaumik, A., Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes, Chem. Commun., 47(23), 6677–6679 (2011).

https://doi.org/10.1039/C1CC11007A

Pandya, K. S., Kumar, C. V. S., Nair, N. S., Patil, P. S. and Naik, N. K., Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites, Int. J. Damage Mech., 24(4), 471–511 (2015).

https://doi.org/10.1177/1056789514531440

Periyasamy, D., Manoharan, B., Arockiasamy, F. S., Aravind, D., Senthilkumar, K., Rajini, N., Muhammed, F. F. and Al-Lohedan, H. A., Exploring the recycling potential of HDPE films reinforced with flax fiber for making sustainable decorative tiles, J. Mater. Res. Technol., 25, 2049–2060 (2023).

https://doi.org/10.1016/j.jmrt.2023.06.067

Pernas-Sánchez, J., Artero-Guerrero, J. A., Varas, D. and López-Puente, J., Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates, Int. J. Impact Eng., 96, 1–10 (2016).

https://doi.org/10.1016/j.ijimpeng.2016.05.010

Peter, S. and Woldesenbet, E., Nanoclay syntactic foam composites-High strain rate properties, Mater. Sci. Eng. A, 494(1–2), 179–187 (2008).

https://doi.org/10.1016/j.msea.2008.04.009

Ray, S. S. and Okamoto, M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28(11), 1539–1641 (2003).

https://doi.org/10.1016/j.progpolymsci.2003.08.002

Reddy, P. R. S., Reddy, T. S., Mogulanna, K., Srikanth, I., Madhu, V. and Rao, K. V., Ballistic impact studies on carbon and E-glass fibre based hybrid composite laminates, Procedia Eng., 173, 293–298 (2017).

https://doi.org/10.1016/j.proeng.2016.12.017

Reis, V. L., Opelt, C. V, Cândido, G. M., Rezende, M. C. and Donadon, M. V., Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates, Compos. Struct., 203, 952–959 (2018).

https://doi.org/10.1016/j.compstruct.2018.06.016

Sabet, S. M., Mahfuz, H., Hashemi, J., Nezakat, M. and Szpunar, J. A., Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties, J. Mater. Sci., 50, 4729–4740 (2015).

https://doi.org/10.1007/s10853-015-9024-y

Shadlou, S., Ahmadi-Moghadam, B. and Taheri, F., The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites, Mater. Des., 59, 439–447 (2014).

https://doi.org/10.1016/j.matdes.2014.03.020

Sharma, B. B. and Parashar, A., Mechanical and fracture behaviour of hydroxyl functionalized h-BN nanosheets, J. Mater. Sci., 55(8), 3228–3242 (2020).

https://doi.org/10.1007/s10853-019-04163-7

Shui-Sheng, Y. U., Yu-Bin, L. U. and Yong, C. A. I., The strain-rate effect of engineering materials and its unified model, Lat. Am. J. Solids Struct., 10, 833–844 (2013).

https://doi.org/10.1590/S1679-78252013000400010

Smith, P. and Hetherington, J., Blast and ballistic loading of structures, Laxtons, Oxford, (1994).

https://doi.org/10.1201/9781482269277

Suhr, J. and Koratkar, N. A., Energy dissipation in carbon nanotube composites: a review, J. Mater. Sci., 43, 4370–4382 (2008).

https://doi.org/10.1007/s10853-007-2440-x

Sun, L., Gibson, R. F., Gordaninejad, F. and Suhr, J., Energy absorption capability of nanocomposites: a review, Compos. Sci. Technol., 69(14), 2392–2409 (2009).

https://doi.org/10.1016/j.compscitech.2009.06.020

Suresh Kumar, R., Senthil Kumar, S., Rajendran, C., Samuel Chelladurai, S. J. and Balcha, G., Investigation on Corrosion Behaviour of LM25-SiCp Composite Using Taguchi Method, Adv. Mater. Sci. Eng., 2022(1), 4341018 (2022).

https://doi.org/10.1155/2022/4341018

Tserpes, K. I. and Papanikos, P., Finite element modeling of single-walled carbon nanotubes, Compos. B Eng., 36(5), 468–477 (2005).

https://doi.org/10.1016/j.compositesb.2004.10.003

Uddin, F., Montmorillonite: An introduction to properties and utilization, London, UK, 817, (2018).

https://doi.org/10.5772/intechopen.77987

Wang, K., Boumbimba, R. M., Bahlouli, N., Ahzi, S., Muller, R. and Bouquey, M., Dynamic compressive behavior of a melt mixed polypropylene/organoclay nanocomposites, J. Eng. Mater. Technol., 134(1), 010905 (2012).

https://doi.org/10.1115/1.4005420

Wu, C. W., Yamauchi, Y., Ohsuna, T. and Kuroda, K., Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM), J. Mater. Chem., 16(30), 3091-3098 (2006).

https://doi.org/10.1039/B604062D

Yamauchi, Y., Nagaura, T., Ishikawa, A., Chikyow, T. and Inoue, S., Evolution of standing mesochannels on porous anodic alumina substrates with designed conical holes, J. Am. Chem. Soc., 130(31), 10165–10170 (2008).

https://doi.org/10.1021/ja7107036

Zhu, J., Kim, J., Peng, H., Margrave, J. L., Khabashesku, V. N. and Barrera, E. V., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Lett., 3(8), 1107–1113 (2003).

https://doi.org/10.1021/nl0342489

Contact Us

Powered by

Powered by OJS