Temperature-induced Modifications in Tungsten Oxide Nanoparticles and their Effect on the Efficiency of Dye-sensitized Solar Cells
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 274-280
Abstract
This study investigates the synthesis and characterization of tungsten oxide (WO3) nanoparticles, with a particular focus on the influence of varying annealing temperatures (100°C, 150°C, and 200°C) on their properties and performance in dye-sensitized solar cells (DSSCs). The WO3 nanoparticles were synthesized using a simple chemical method and characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The results indicated that higher annealing temperatures led to an increase in crystalline size and improved crystallinity. The band gap energies were found to increase slightly with higher temperatures, influencing the optical absorption properties. XRD analyses revealed temperature-dependent morphological changes, with particle sizes ranging from 38.1 nm to 46.9 nm. The photovoltaic performance of DSSCs incorporating WO3 nanoparticles demonstrated enhanced efficiency with increasing annealing temperature, achieving a maximum efficiency of 0.0093% at 200°C. These findings provide valuable insights into optimizing WO3 nanoparticles for diverse applications, particularly in energy conversion technologies.
Full Text
Reference
Andrievskii, R. A., The synthesis and properties of nanocrystalline refractory compounds, Russ. Chem. Rev., 63(5), 411–427 (1994).
https://doi.org/10.1070/RC1994v063n05ABEH000094
Babu, A., Vasanth, A., Nair, S. and Shanmugam, M., WO3 passivation layer-coated nanostructured TiO2: An efficient defect engineered photoelectrode for dye sensitized solar cell, J. Semicond., 42(5), 052701 (2021).
https://doi.org/10.1088/1674-4926/42/5/052701
Desseigne, M., Dirany, N., Chevallier, V. and Arab, M., Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation, Appl. Surf. Sci., 483, 313-323 (2019).
https://doi.org/10.1016/j.apsusc.2019.03.269
Dikusar, A. I., Globa, P. G., Belevskii, S. S. and Sidel’nikova, S. P., On limiting rate of dimensional electrodeposition at meso- and nanomaterial manufacturing by template synthesis, Surf. Eng. Appl. Electrochem., 45(3), 171–179 (2009).
https://doi.org/10.3103/S1068375509030016
Hasany, S. F., Ahmed, I., Rajan, J, and Rehman, A., Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles, Nanosci. Nanotechnol., 2(6), 148–158 (2013).
https://doi.org/10.5923/j.nn.20120206.01
Fang-Bai, L., Guo-Bang, G., Xin-Jun, L. and Hong-Fu, W., Preparation,Characterization and Photo-catalytic Behavior of WO3/TiO2 Nanopowder, Acta Physico-Chimica Sin., 16(11), 997–1002 (2000).
https://doi.org/10.3866/PKU.WHXB20001108
Gohil, S., Chandra, R., Chalke, B., Bose, S. and Ayyub, P., Sputter Deposition of Self-Organized Nanoclusters Through Porous Anodic Alumina Templates, J. Nanosci. Nanotechnol., 7(2), 641–646 (2007).
https://doi.org/10.1166/jnn.2007.121
Huang, J. J., Cheng, T. F., Ho, Y. R. and Huang, D. P., Performance improvement of dye-sensitized solar cells by using TiO2 compact layer and silver nanowire scattering layer, Thin Solid Films, 736, 138903 (2021).
https://doi.org/10.1016/j.tsf.2021.138903
Konrad, A., Herr, U., Tidecks, R., Kummer, F. and Samwer, K., Luminescence of bulk and nanocrystalline cubic yttria, J. Appl. Phys., 90(7), 3516–3523 (2001).
https://doi.org/10.1063/1.1388022
Kumar, V. B. and Mohanta, D., Formation of nanoscale tungsten oxide structures and colouration characteristics, Bull. Mater. Sci., 34(3), 435–442 (2011).
https://doi.org/10.1007/s12034-011-0117-1
Pfeifer, J., Guifang, C., Tekula-Buxbaum, P., Kiss, B. A., Farkas-Jahnke, M. and Vadasdi, K., A reinvestigation of the preparation of tungsten oxide hydrate WO3, 1/3H2O, J. Solid State Chem., 119(1), 90–97 (1995).
https://doi.org/10.1016/0022-4596(95)80013-F
Prabhu, N., Agilan, S., Muthukumarasamy, N. and Senthil, T. S., Enhanced photovoltaic performance of WO3 nanoparticles added dye sensitized solar cells, J. Mater. Sci. Mater. Electron., 25(12), 5288–5295 (2014).
https://doi.org/10.1007/s10854-014-2303-6
Rout, C. S., Govindaraj, A. and Rao, C. N. R., High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires, J. Mater. Chem., 16(40), 3936 (2006).
https://doi.org/10.1039/b607012b
Santos, L., Silveira, C. M., Elangovan, E., Neto, J. P., Nunes, D., Pereira, L., Martins, R., Viegas, J., Moura, J. J. G., Todorovic, S., Almeida, M. G. and Fortunato, E., Synthesis of WO3 nanoparticles for biosensing applications, Sensors Actuators B Chem., 223, 186–194 (2016).
https://doi.org/10.1016/j.snb.2015.09.046
Saini, S., Kaur, K., Pahwa, C. and Singh, S., Temperature Dependent Structural, Optical, Photocatalytic and Magnetic Properties of WO3 Nanoparticles, J. Water Environ. Nanotechnol., 9(3), 318-326 (2024).
https://doi.org/10.22090/jwent.2024.03.05
Shabdan, Y., Markhabayeva, A., Bakranov, N. and Nuraje, N., Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting, Nanomater., 10, 1871 (2020).
https://doi.org/10.3390/nano10091871
Tsuyumoto, I., Facile synthesis of nanocrystalline hexagonal tungsten trioxide from metallic tungsten powder and hydrogen peroxide, J. Am. Ceram. Soc., 101(2), 509–514 (2018).
https://doi.org/10.1111/jace.15250
Wang, L., Xu, K., Tang, H. and Zhu, L. Vertical Growth of WO3 Nanosheets on TiO2 Nanoribbons as 2D/1D Heterojunction Photocatalysts with Improved Photocatalytic Performance under Visible Light., Catal., 13, 556 (2023).
https://doi.org/10.3390/catal13030556
Yong, S. M., Nikolay, T., Ahn, B. T. and Kim, D. K., One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells, J. Alloys Compd., 547, 113–117 (2013).
https://doi.org/10.1016/j.jallcom.2012.08.124
Zhang, H., Liu, J., Xu, T., Ji, W., Zong, X. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting, Catal., 13, 728 (2023).