Physical, Mechanical and Thermal Characterization of Areca, Pineapple and Glass Fiber Reinforced Polymer Composites for Aerospace Applications
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 345-352
Abstract
In the current scenario, the focus on applying natural fiber-reinforced polymer composites in aerospace applications has increased tremendously due to their attractive characteristics such as lightweight, higher strength-to-weight ratio, good thermal stability at environmental temperatures, resistance to corrosion, sound absorbing capability and increased fuel efficiency. Further, studies on Bi-directionally oriented fiber composites have more advantages than the random or unidirectional orientation, such as uniform stress distribution and improved bonding at the interface. So, the present work focuses on using the Areca, Pineapple Leaf Fiber (PALF) and Glass fiber as the bi-directional fiber mat for reinforcing it into Epoxy polymer. The three different materials were fabricated by changing the fiber type with constant volume fraction and orientation. The martial characterization was done on the fabricated composites in order to evaluate their orientation effectiveness through density, moisture absorption, tensile, impact, hardness and thermal degradation. The bonding relationship was analyzed through a Scanning Electron Microscope. The results showed that the properties obtained were higher for the PALF composite than the areca composites due to the fact that the higher surface area of PALF fibers is confirmed through SEM analysis.
Full Text
Reference
Akhil, U. V., Radhika, N., Saleh, B., Aravind Krishna, S., Noble, N., & Rajeshkumar, L., A comprehensive review on plant‐based natural fiber reinforced polymer composites: fabrication, properties, and applications, Polym. Compos., 44(5), 2598-2633 (2023).
https://doi.org/10.1002/pc.27274
Anand, P. B., Lakshmikanthan, A., GowdruChandrashekarappa, M. P., Selvan, C. P., Pimenov, D. Y. and Giasin, K., Experimental investigation of effect of fiber length on mechanical, wear, and morphological behavior of silane-treated pineapple leaf fiber reinforced polymer composites, Fibers, 10(7), 56 (2022).
https://doi.org/10.3390/fib10070056
Arib, R. M. N., Sapuan, S. M., Hamdan, M. A. M. M., Paridah, M. T. and Zaman, H. M. D. K., A literature review of pineapple fibre reinforced polymer composites. Polym. Compos.,12(4), 341-348 (2004).
https://doi.org/10.1177/096739110401200408
Aruna, M., Manivannan, S., Kumar, A., Vignesh Kumar, M., Chandramohan, P., Lakshmanan, S., & Venkatesh, R., Impact of Silicon Carbide Particle on the Behavior of Coir Fiber-Incorporated Polypropylene Hybrid Composite. J. Inst. Eng. India Ser. D., (2024).
https://doi.org/10.1007/s40033-024-00734-4
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R. and Hoque, M. E.. A review on pineapple leaves fibre and its composites, Int. J. Polym. Sci., (1), 950567 (2015).
https://doi.org/10.1155/2015/950567
BA, P., Shetty, P. B., N, V., HV, S. and Singh Yadav, S. P., Mechanical properties and water absorption behaviour of pineapple leaf fibre reinforced polymer composites. Adv. Mater. Process. Technol., 8(2), 1336-1351 (2022).
https://doi.org/10.1080/2374068X.2020.1860354
Bakhori, S. N. M., Hassan, M. Z., Bakhori, N. M., Rashedi, A., Mohammad, R., Daud, M. Y. M. and Kumar, A., Mechanical properties of PALF/Kevlar-reinforced unsaturated polyester hybrid composite laminates, Polymers, 14(12), 2468 (2022).
https://doi.org/10.3390/polym14122468
Chandradass, J., Thirugnanasambandham, T., Amutha Surabi, M., Baskara Sethupathi, P. aand Rajendran, R., Development of Asbestos Free Aramid Fibre based Friction lining Material for Automotive Application, SAE Technical Papers, (2023).
https://doi.org/10.4271/2023-28-0122
Cheng, F., Hu, Y. and Yuan, J. (2014). Preparation and characterization of glass fiber-coir hybrid composites by a novel and facile Prepreg/Press process.Fiber Polym.,15, 1715-1721.
https://doi.org/10.1007/s12221-014-1715-5
Cisneros-López, E. O., González-López, M. E., Pérez-Fonseca, A. A., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R., Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos. Interfaces, 24(1), 35-53 (2017).
https://doi.org/10.1080/09276440.2016.1184556
De Poures, M. V., Shariff, J., Chakravarthy, K. S., Rao, K. S., Prasad, V. S., Reddy, Y. S. and Saveetha, G., Influence of Silica Nanoparticles on Mechanical Properties of Bast Fibers Made Epoxy Composite via Injection Moulding Route, J. Inst. Eng. India Ser. D., 1-6 (2024)..
https://doi.org/10.1007/s40033-024-00738-0
De Poures, M. V., Sudhir Chakravarthy, K., Jabihulla Shariff, M. D., Srinivasa Reddy, Y., Siva Prasad, V., Sreenivasa Rao, K. and Kishore, K., V. Excellence of Nano SiC on Mechanical Behaviour of Low Density Polyethylene Hybrid Nanocomposite, J. Inst. Eng. India Ser. D (2024).
https://doi.org/10.1007/s40033-024-00713-9
Herrera-Franco, P. and Valadez-Gonzalez, A., A study of the mechanical properties of short natural-fiber reinforced composites, Compos. B Eng., 36(8), 597-608 (2005).
https://doi.org/10.1016/j.compositesb.2005.04.001
Joshi, S. and Patel, S., Review on mechanical and thermal properties of pineapple leaf fiber (PALF) reinforced composite. J. Nat. Fibers., 19(15), 10157-10178 (2022).
https://doi.org/10.1080/15440478.2021.1993487
Krishnakumar, S., Mohanavel, V., Venkatesh, R. and Balasubramanian, K., Enhancement of tribology behaviour by the addition of different fiber length of pineapple fiber reinforced polyester composite, J. Mech. Sci. Technol., 38(1), 201-206 (2024).
https://doi.org/10.1007/s12206-023-1217-8
Mittal, M. and Chaudhary, R., Biodegradability and mechanical properties of pineapple leaf/coir Fiber reinforced hybrid epoxy composites, Mater. Res. Express, 6(4), 045301 (2019).
https://doi.org/10.1088/2053-1591/aaf8d6
Mohanavel, V., Suresh Kumar, S., Vairamuthu, J., Ganeshan, P. and Nagaraja Ganesh, B., Influence of stacking sequence and fiber content on the mechanical properties of natural and synthetic fibers reinforced penta-layered hybrid composites, J. Nat. Fibers, 19(13), 5258-5270 (2022).
https://doi.org/10.1080/15440478.2021.1875368
Odusote, J. K. and Oyewo, A. T., Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket, J. Eng. Technol., 7(1), 125-139 (2016).
https://doi.org/10.1016/j.matdes.2004.11.009
Pai, A. R. and Jagtap, R. N., Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites—A review. J. Mater. Environ. Sci., 6(4), 902-917 (2015).
Rahman, M., Das, S. and Hasan, M., Mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites, Adv. Mater. Process. Technol., 4(4), 527-537 (2018).
https://doi.org/10.1080/2374068X.2018.1468972
Raja, T., Mohanavel, V., Ravichandran, M., Kumar, S. S., Albaqami, M. D., Alotabi, R. G. and Murugesan, M., Dynamic mechanical analysis of banyan/ramie fibers reinforced with nanoparticle hybrid polymer composite, Adv. Polym. Technol., 2022(1), 1560330 (2022).
https://doi.org/10.1155/2022/1560330
Ramesh, M., Jafrey Daniel James, D., Sathish Kumar, G., Vijayan, V., Raja Narayanan, S. and Teklemariam, A., Synthesis and characterization of banana and pineapple reinforced hybrid polymer composite for reducing environmental pollution, Bioinorg. Chem. Appl., 2022(1), 6344179 (2022).
https://doi.org/10.1155/2022/6344179
Sadek, M. G., Abdellah, M. Y. and Abdel-Jaber, G. T., A Review on Properties, Applications and Feasibility Study of Date Palm Fiber-Reinforced Polymer Composites, SVU-Int. J. Eng. Sci. Appl., 5(2), 50-61 (2024).
https://doi.org/10.21608/SVUSRC.2024.258614.1171
Siakeng, R., Jawaid, M., Ariffin, H. and Sapuan, S. M., Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites, IOP Conf. Ser. Mater. Sci. Eng., 368, 012019 (2018).