Photocatalytic Degradation of Transition Metal (Ni) Doped ZnS Nanoparticles Synthesized via Simple Solvothermal Route
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 115-122
Abstract
Ni doped ZnS nanoparticles were obtained using the simple Solvothermal Microwave Irradiation (SMI) method in this research. This technique is cost-effective and results in a high level of uniformity in particle size. The sample's structural characteristics were examined utilizing XRD Technique, FESEM image, Elemental analysis of the as prepared sample obtained from EDX spectrum and their optical characteristics analysed by using UV-Visible absorption study. The XRD pattern of Ni doped ZnS nanoparticles were to obtain their crystallite size (D), lattice constant (a), and volume of the unit cell (V). As the concentration of Ni dopant increased (0, 2.5, 5.0) M %, the values of the lattice constant decreased, leading to an overall decrease in the volume of the unit cell. FESEM images reveals the sample have uniform surface morphology and EDX analysis give evidence for element Zn, Ni, S presents in the sample. Ni doped ZnS nanoparticle dimension strongly influences their optical characteristics. The optical bandgap, as obtained from UV-Vis measurements, ranges from 3.54 eV to 3.50 eV with doping concentrations varying from 0 M% to 5.0 M% .This adjustment in optical properties suggests that Ni-doped ZnS nanoparticles have diverse applications in optoelectronics, sensors, UV detectors, and as an efficient photocatalyst for degrading pollutants in water. The efficiency of the degradation of Methylene Blue dye by Ni doped ZnS nanoparticles was found to be 75.19%.
Full Text
Reference
Amiri, O., Hosseinpour, M. S. M., Rad, M. M. and Abdvali, F., Sonochemical synthesis and characterization of CdS/ZnS core–shell nanoparticles and application in removal of heavy metals from aqueous solution, Super lattices and Microstructures, 66, 67-75 (2014).
https://doi.org/10.1016/j.spmi.2013.11.003
Chen, J., Xin, F., Qin, S. and Yin, X., Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts, Chem. Eng. J., 230, 506-512 (2013).
https://doi.org/10.1016/j.cej.2013.06.119
Farooqi, M. M. H. and Srivastava, R. K., Structural, optical and photoconductivity study of ZnS nanoparticles synthesized by a low temperature solid state reaction method, Mater. Sci. Semicond. Process., 20, 61-67 (2014).
https://doi.org/10.1016/j.mssp.2013.12.028
Gowdhaman, P., Praveen, V. N., Saravanan, R. S. S., Venkateswari, P. and Pandya, H. M., Facile synthesis of undoped and Sn doped CdS nanoparticles for dye-sensitized solar cell applications, Opt. Mater., 120, 111465 (2021).
https://doi.org/10.1016/j.optmat.2021.111465
Hussein, H. M.. Structural and optomagnetic properties of Ni-doped ZnS synthesized by solvothermal method, Colloid Journal, 85(4), 666-672 (2023).
https://doi.org/10.1134/S1061933X22600610
Joseph, A., Billakanti, S., Pandit, M. A., Khatun, S., Rengan, A. K., & Muralidharan, K., Impact of bandgap tuning on ZnS for degradation of environmental pollutants and disinfection. Environmental Science and Pollution Research, 29(37), 56863-56875(2022).
https://doi.org/10.1007/s11356-022-19677-y
Jothibas, M., Manoharan, C., Jeyakumar, S. J., Praveen, P., Punithavathy, I. K. and Richard, J. P., Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles, Sol. Energy, 159, 434-443 (2018).
https://doi.org/10.1016/j.solener.2017.10.055.
Kaur, Jagdeep, Manoj Sharma, and O. P. Pandey. "Photoluminescence and photocatalytic studies of metal ions (Mn and Ni) doped ZnS nanoparticles, Optical Materials, 47, 7-17, (2015).
https://doi.org/10.1016/j.optmat.2015.06.022
Krishnan, B., Shaji, S., Acosta, E. M. C., Acosta, E. E. B., Castillo-Ortega, R., Zayas, M. E., Cortese, B., Group II–VI Semiconductors, Semiconductors: Synthesis, Properties and Applications, 397-464 (2019).
https://doi.org/10.1007/978-3-030-02171-9_7
Kumar, S. and Verma, N. K., Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods, J. Mater. Sci.: Mater. Electron ., 25, 785-790 (2014).
https://doi.org/10.1007/s10854-013-1646-8
Kumar, V., Rawal, I., Kumar, V., & Goyal, P. K., Efficient UV photodetectors based on Ni-doped ZnS nanoparticles prepared by facial chemical reduction method. Physica B: Condensed Matter, 575,411690(2019).
https://doi.org/10.1016/j.physb.2019.411690
Marković, S., Stanković, A., Lopičić, Z., Lazarević, S., Stojanović, M., & Uskoković, D., Application of raw peach shell particles for removal of methylene blue. Journal of Environmental Chemical Engineering, 3(2), 716-724(2015).
https://doi.org/10.1016/j.jece.2015.04.002
La, P. F. A., Ferrer, M. M., De, S., Y. V., Raubach, C. W., Longo, V. M., Sambrano, J. R. and Varela, J. A., Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method, J. Alloys Compd., 556, 153-159 (2013).
https://doi.org/10.1016/j.jallcom.2012.12.081
Patel, P. C., Ghosh, S., & Srivastava, P. C., Bound magnetic polaron driven room-temperature ferromagnetism in Ni doped ZnS nanoparticles. Materials Chemistry and Physics, 216, 285-293 (2018).
https://doi.org/10.1016/j.matchemphys.2018.05.065
Pouretedal, H. R. and Keshavarz, M. H., Synthesis and characterization of Zn1− XCuXS and Zn1− XNiXS nanoparticles and their applications as photocatalyst in Congo red degradation, J. Alloys Compd., 501(1), 130-135 (2010).
https://doi.org/10.1016/j.jallcom.2010.04.058
Rajabi, H. R. and Farsi, M., Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization, J. Mol. Catal. A: Chem., 399, 53-61 (2015).
https://doi.org/10.1016/j.molcata.2015.01.029
Ramasamy, V., Praba, K., Murugadoss, G., Synthesis and study of optical properties of transition metals doped ZnS nanoparticles, Spectrochim. Acta, Part A, 96, 963-971 (2012).
https://doi.org/10.1016/j.saa.2012.07.125.
Raza, M., Farooq, U., Khan, S. A., Ullah, Z., Khan, M. E., Ali, S. K., ... & Zakri, W., Preparation and Spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen Production: Reaction Kinetics, mechanistic insights. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124513 (2024).
https://doi.org/10.1016/j.saa.2024.124513
Saravanan, R. S. S. and Mahadevan, C. K., Photoluminescence and electrical impedance measurements on alloyed Zn (1− x) CdxS nanocrystals, J. Alloys Compd., 541, 115-124 (2012).
https://doi.org/10.1016/j.jallcom.2012.06.048
Srivastava, R. K., Pandey, N. and Mishra, S. K., Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method, Mater. Sci. Semicond. Process., 16(6), 1659-1664 (2013).
https://doi.org/10.1016/j.mssp.2013.06.009
Suganthi, N. and Pushpanathan, K., Photocatalytic degradation and antimicrobial activity of transition metal doped mesoporous ZnS nanoparticles, Int. J. Environ. Sci. Technol., 16, 3375-3388 (2019).
https://doi.org/10.1007/s13762-018-1811-y
Tiwary, K. P., Ali, F., Choubey, S. K., Mishra, R. K., & Sharma, K., Doping effect of Ni2+ ion on structural, morphological and optical properties of Zinc sulfide nanoparticles synthesized by microwave assisted method, Optik, 227, 166045 (2021).
https://doi.org/10.1016/j.ijleo.2020.166045
Wang, X., Peng, D., Huang, B., Pan, C. and Wang, Z. L., Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications, Nano Energy, 55, 389-400 (2019).
https://doi.org/10.1016/j.nanoen.2018.11.014
Wu, M., Wei, Z., Zhao, W., Wang, X. and Jiang, J., Optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors synthesized by hydrothermal method, J. Nanomaterials., 2017(1), 1603450 (2017).
https://doi.org/10.1155/2017/1603450
Xu, X., Li, S., Chen, J., Cai, S., Long, Z. and Fang, X., Design principles and material engineering of ZnS for optoelectronic devices and catalysis, Adv. Funct. Mater., 28(36), 1802029 (2018).
https://doi.org/10.1002/adfm.201802029
Zein, R. and Alghoraibi, I., Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method, J. Nanomater., 2019(1), 7541863 (2019).