Structural, Optical and Photoconductive Properties of Brush Plated Copper Gallium Selenide Films
J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 63-70
Abstract
Copper Gallium selenide films were deposited for the first time by the brush electrodeposition technique. The films were deposited at different bath temperatures in the range of 30 - 80°C at a constant current density of 3.0 mA cm- 2. The films exhibited single phase Copper Gallium selenide. Optical band gap of the film deposited at 80°C was1.68 eV. Room temperature resistivity of the films were in the range of 0.1 - 14.0 ohm cm. Photoconductivity measurements were made at room temperature. Photocurrent Capacitance voltage measurements indicated the films to exhibit p -type behaviour. The flat band potential (Vfb) was 0.60V (SCE) and a carrier density in the range of 2.5 x 1017 cm-3 was obtained. A single Photoluminescence peak was observed at 1.64 eV.
Full Text
Reference
Annapurna, J.L and Reddy, K.V., Indian J. Pure Appl. Phys. 24, 283, (1986).
Bjorn Marsen, Brian Cole, Eric L. Miller, Sol. Energy.Mater. Sol. Cells, 92, 1054, (2008).
http://dx.doi.org/10.1016/j.solmat.2008.03.009
Cheng, Y.F., Luo, J.L., Electrochim. Acta, 44 2947, (1999).Leisch, J., Abushama, J., Turner, J.A. ECS Meet. Abstr. 502, 821, (2006).
Pal, R., Chattopadhya, K.K., Chandhuri, S., Pal, A.K. Sol. Energy Mater. Sol. Cells, 33,241, (1994).
http://dx.doi.org/10.1016/0927-0248(94)90210-0
Fernandez, A.M., Dhere, N., Turner, J.A., Martinez, A.M., Arriaga, L.G., Cano, U. Sol. Energy Mater. Sol. Cells, 85 251, (2005).
http://dx.doi.org/10.1016/j.solmat.2004.03.006
Fischer, D., Dylla, T., Meyer, N., Beck, M.E., Jager-Waldau, A., Ch.Lux-Steiner, M., Thin solid films, 387 63, (2001).
http://dx.doi.org/10.1016/S0040-6090(01)00800-8
Grossberg, M., Krustok, J., Siebentritt, S., Albert, J., Phys. B, 404, 184, (2009).
http://dx.doi.org/10.1016/j.physb.2009.03.027
Kazmerski, L.L., Hallerdt, M., Ireland, P.J., Mickelsen, R.A., Chen, W.S., J. Vac. Sci Technol. A, 1,395, (1983).
http://dx.doi.org/10.1116/1.571928
Kessler, J., Lincot, D., Vedel, J., Dimmler, B. and Schock, H.W., Sol. Cells, 29, 267, (1990).
http://dx.doi.org/10.1016/0379-6787(90)90001-L
Lai, S.C., Tseng, B.H., Hwang, H.L., Inst. Phys. Conf. Ser. 152, 461, (1997).
Pankove, J.l., Optical Processes in Semicond u c t o r s (Dover), New York, p. 34, (1971).
Romeo, N., Sberveglieri, G., Tarricone L., and Paorici, C., Appl. Phys. Lett., 30 108, (1977).
http://dx.doi.org/10.1063/1.89307
Rose, A., Phys. Rev, 97, 1538, (1955).
http://dx.doi.org/10.1103/PhysRev.97.1538
Rusu, M., Gashin, P., Simashkevich, A., Sol. Energy Mater. & Sol. Cells 70 175, (2001).
http://dx.doi.org/10.1016/S0927-0248(01)00023-X
Scherrer, P., Gott. Nachr., 2, 98, (1918).
Shahidi, A.V., Shih, I., C.H.Champness, Sol. Energy Mater, 12, 383, (1985).
http://dx.doi.org/10.1016/0165-1633(85)90008-5
Sherrif, M.El., Terra, F.S., Khodier, S.A., Mater, J. Sci. Mater in Electronics, 7 391, (1996).
Vijayakumar, A., Du, T., Sundaram, K.B., Appl. Surf. Sci, 242, 168 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.08.027
Williamson, G.B., Smallman, R.C., Phil. Mag., 1, 34, (1956).
http://dx.doi.org/10.1080/14786435608238074