Open Access

ZnSnS Nanoparticles Synthesized by Simple SMI Technique for Photocatalytic Application

K. Valliyammal, nithy.n@gmail.com
Physics Research Centre, Chikkanna Government Arts College, TN, India
R. Sakthi Sudar Saravanan Physics Research Centre, Chikkanna Government Arts College, TN, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 123-132

https://doi.org/10.13074/jent.2024.09.242764

PDF


Abstract

Photocatalysis, driven by semiconductor nanoparticles under visible or ultraviolet light, has emerged as a powerful and sustainable approach for environmental remediation and clean energy production. In this study, we investigate the photocatalytic potential of tin (0, 2, 4, 6, 8, 10) mole % alloyed with zinc sulfide (ZnSnS) nanoparticles as efficient catalysts for various environment and energy-related applications. ZnSnS nanoparticles were produced via a simple microwave irradiation technique. Comprehensive structural characterization through X-ray diffraction (XRD), FESEM, EDAX and HRTEM confirmed the successful incorporation of tin atoms into the ZnS crystal lattice. Optical study indicated significant blue shifts in the absorption edge, extending the light absorption into the visible region, a key advantage for photocatalytic applications. Photocatalytic experiments were conducted to evaluate the performance of Zn-alloyed SnS nanoparticles in degrading organic pollutants and hydrogen evolution from water splitting reactions. Our results revealed remarkable enhancements in photocatalytic activity. The enhanced efficiency can be credited to the creation of fresh energy levels within the bandgap, aiding in the separation and movement of charges, and also to the heightened light absorption caused by the reduced bandgap. Furthermore, stability tests indicated the durability of (ZnSnS) nanoparticles, making them suitable candidates for long-term applications in real-world environments. The observed photocatalytic activity enhancements hold promise for addressing environmental issues, including wastewater treatment, air purification, and hydrogen production for clean energy.

Full Text

Reference


Abd, E. M. S. and Babu, S. M., Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule, Physica B, 405(16), 3279-3283 (2010).

https://doi.org/10.1016/j.physb.2010.04.060

Asfia, M. B. and Rashid, M. A., First principles calculations of structural, electronic and optical properties of Sn-alloyed ZnS, Physica B, 646, 414335 (2022).

https://doi.org/10.1016/j.physb.2022.414335

Gedi, S., Reddy, V. R. M., Kotte, T. R. R. and Kim, S. H., Jeon, C. W., “Chemically synthesized Ag-alloyed ZnS films for PV applications, Ceram. Int., 42(16), 19027-19035 (2016).

https://doi.org/10.1016/j.ceramint.2016.09.059

Chandrasekar, L. B., Gnaneswari, M. D., Murugeswari, A., Sundaram, P. S., Ananthan, N., & Karunakaran, M., Preparation, characterization, and antibacterial activity of Ni, Sn co-doped ZnO nanoparticles: Effect of Sn doping concentration., Journal of Crystal Growth., 633, 127660 (2024).

https://doi.org/10.1016/j.jcrysgro.2024.127660

Gowdhaman, P., Praveen, V. N., Saravanan, R. S. S., Venkateswari, P. and Pandya, H. M., Facile synthesis of undoped and Sn doped CdS nanoparticles for dye-sensitized solar cell applications, Opt. Mater., 120, 111465 (2021).

https://doi.org/10.1016/j.optmat.2021.111465

Gowdhaman, P., Sakthi SudarSaravanan, R., Venkatesan, T. and Haresh M. Pandya, Wide Bandgap Semiconductor Alloy Nanomaterials for Potential Applications – A Future Perspective Approach, J. Environ. Nanotechnol., 7(1), 37-40 (2018).

https://dx.doi.org/10.13074/jent.2018.03.181299

Hammad, T. M., Salem, J. K., Kuhn, S., Draaz, M. A., Hempelmann, R. and Kodeh, F. S., Optical properties of Cu2+ and Fe2+ doped ZnS semiconductor nanoparticles synthesized by co-precipitation method, J. Mater. Sci.: Mater. Electron., 26, 5495-5501 (2015).

https://doi.org/10.1007/s10854-015-3106-0

Jasrotia, R., Verma, A., Verma, R., Godara, S. K., Ahmed, J., Mehtab, A. and Kalia, S., Photocatalytic degradation of malachite green pollutant using novel dysprosium modified Zn–Mg photocatalysts for wastewater remediation, Ceram. Int., 48(19), 29111-29120 (2022).

https://doi.org/10.1016/j.ceramint.2022.05.050

Juan, J. R. M., Levchuk, I., Ibañez, P. F. and Sillanpää, M., A critical review on application of photocatalysis for toxicity reduction of real wastewaters, J. Cleaner Prod., 258, 120694 (2020).

Kumar, R., Sakthivel, P., & Mani, P., Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn. Applied Physics A, 125(8), 543 (2019).

https://doi.org/10.1016/j.jclepro.2020.120694

Kripal, R., Gupta, A. K., Mishra, S. K., Srivastava, R. K., Pandey, A. C. and Prakash, S. G., Photoluminescence and photoconductivity of ZnS: Mn2+ nanoparticles synthesized via co-precipitation method, Spectrochim. Acta, Part A, 76(5), 523-530 (2010).

https://doi.org/10.1016/j.saa.2010.04.018

Kunapalli, C. K., Chakraborty, D. and Shaik, K., Structural, optical, and magnetic properties of Sn-alloyed ZnS thin films: role of post-annealing, J. Aust. Ceram. Soc., 58(4), 1105-1110 (2022).

https://doi.org/10.1007/s41779-022-00786-3

Mehra, S., Singh, M. and Chadha, P., Adverse impact of textile dyes on the aquatic environment as well as on human beings, Toxicol. Int., 28(2), 165 (2021).

https://doi.org/10.18311/ti/2021/v28i2/26798

Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., Issaabadi, Z., An introduction to nanotechnology, Interface Sci. Technol., 28, 1-27 (2019).

https://doi.org/10.1016/B978-0-12-813586-0.00001-8

Rajabi, H. R. and Farsi, M., Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization, J. Mol. Catal. A: Chem. , 399, 53-61 (2015).

https://doi.org/10.1016/j.molcata.2015.01.029

Ramki, K., Raja, P. A., Sakthivel, P., Murugadoss, G., Thangamuthu, R. and Rajesh, K. M., Rapid degradation of organic dyes under sunlight using tin-alloyed ZnS nanoparticles, J. Mater. Sci.: Mater. Electron., 31, 8750-8760 (2020).

https://doi.org/10.1007/s10854-020-03410-x

Sabaghi, V., Davar, F. and Fereshteh, Z., ZnS nanoparticles prepared via simple reflux and hydrothermal method: Optical and photocatalytic properties, Ceram. Int., 44(7), 7545-7556 (2018).

https://doi.org/10.1016/j.ceramint.2018.01.159

Saravanan, R. S. S. and Mahadevan, C. K., Photoluminescence and electrical impedance measurements on alloyed Zn (1− x) CdxS nanocrystals, J. Alloys Compd., 541, 115-124 (2012).

https://doi.org/10.1016/j.jallcom.2012.06.048

Sonawane, J. R., & Kulkarni, A. A., Model predicted optimization of experimental set-up and process conditions for microwave-assisted synthesis of silver nanowires. Chemical Engineering Journal, 155483 (2024).

https://doi.org/10.1016/j.cej.2024.155483

Sebastian, S., Kulandaisamy, I., Valanarasu, S., Yahia, I. S., Kim, H. S. and Vikraman, D., Microstructural and electrical properties evaluation of lead alloyed tin sulfide thin films, Journal of Sol-Gel Science and Technology, 93, 52-61 (2020).

https://doi.org/10.1007/s10971-019-05169-y

Shah, U., Jan, F. A., Ullah, R., Wajidullah, Ullah, N. and Ahmad, M., Photocatalytic Degradation of Acidic and Basic Dye by ZnS and Tin-Alloyed ZnS Nanocatalysts, Iran. J. Sci., 47(3), 733-747 (2023).

https://doi.org/10.1007/s40995-023-01462-2

Sharma, K., Raizada, P., Hasija, V., Singh, P., Bajpai, A., Nguyen, V. H. and Van, L., Q., ZnS-based quantum dots as photocatalysts for water purification, J. Water Process Eng., 43, 102217, (2021).

https://doi.org/10.1016/j.jwpe.2021.102217

Shirmardi, M., Mahvi, A. H., Hashemzadeh, B., Naeimabadi, A., Hassani, G., & Niri, M. V.,The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean Journal of Chemical Engineering, 30, 1603-1608(2013).

https://doi.org/10.1007/s11814-013-0080-1

Tong, Y., Hou, Y., Zhang, Z., Yan, L., Chen, X., Zhang, H. and Li, Y., Current progress of metal sulfides derived from MOFs for photocatalytic hydrogen evolution, Appl. Catal., A, 119387, (2023).

https://doi.org/10.1016/j.apcata.2023.119387

Velumani, S. and Ascencio, J. A., Formation of ZnS nanorods by simple evaporation technique, Appl. Phys. A, 79, 153-156, (2004).

https://doi.org/10.1007/s00339-003-2367-2

Xu, X., Li, S., Chen, J., Cai, S., Long, Z., Fang, X., Design principles and material engineering of ZnS for optoelectronic devices and catalysis, Adv. Funct. Mater., 28(36), 1802029 (2018).

https://doi.org/10.1002/adfm.201802029

Yin, L., Wang, D., Huang, J., Cao, L., Ouyang, H. and Yong, X., Morphology-controllable synthesis and enhanced photocatalytic activity of ZnS nanoparticles, J. Alloys Compd., 664, 476-480 (2016).

https://doi.org/10.1016/j.jallcom.2015.10.281

Zhou, M., Gong, Y., Xu, J., Fang, G., Xu, Q. and Dong, J., Colloidal CZTS nanoparticles and films: preparation and characterization, J. Alloys Compd., 574, 272-277 (2013)

https://doi.org/10.1016/j.jallcom.2013.05.143

Contact Us

Powered by

Powered by OJS