Open Access

Studies on Alkaline Activator, Manufacturing Methods and Mechanical Properties of Geopolymer Concrete - A Review

M. Nanthini, nandhupriya.md.10@gmail.com
Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, India
R. Ganesan, Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, India V. Jaganathan Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 52-72

https://doi.org/10.13074/jent.2024.09.242753

PDF


Abstract

Continuous production of cement products, a new environmentally responsible geopolymer material, can reduce CO2 emissions from increased cement production. Compared to ordinary Portland cement (O.P.C.) geopolymer concrete, it has better mechanical strength and corrosion and fire resistance. Most industrial solid wastes and bottom ash from waste incineration are disposed of unevenly, which consumes land resources and negatively affects the ecosystem. The best alternative resource for the synthesis of geopolymer composites is recycling. Metals, pesticides, and other radioactive pollutants are successfully absorbed by geopolymer composites, which is very favorable for the ultimate development of civilization. Therefore, this review has examined essential material parameters, including new properties, compressive strength, flexural strength, elastic Modulus, compressive strength, and split-tensile strength applications. According to the previous experimental results, G.P.C. offered better fresh properties than conventional composites. This review revealed the geopolymerization process, the types of alkaline/alkali activators, synthesis techniques, sources of natural raw materials, and applications of geopolymer concrete. The present work discussed the conceptual framework for the sustainable production of geopolymer materials by evaluating the drawbacks, applications, and restrictions of geopolymer materials and their potential development.

Full Text

Reference


Abdel-Ghani, N. T., Elsayed, H. A. and AbdelMoied, S., Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance, HBRC J, 14(2), 159–164(2018).

https://doi.org/10.1016/j.hbrcj.2016.06.001

Ahmed, H. Q., Jaf, D. K. and Yaseen, S. A., Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars, Constr. Build Mater., 231117185(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117185

Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A. and Sherwani, A. F. H., Use of recycled fibers in concrete composites: A systematic comprehensive review, Compos. Part B Eng., 215108769 (2021).

https://doi.org/10.1016/j.compositesb.2021.108769

Al-Azzawi, M., Yu, T. and Hadi, M. N. S., Factors Affecting the Bond Strength Between the Fly Ash-based Geopolymer Concrete and Steel Reinforcement, Structures, 14262–272(2018).

https://doi.org/10.1016/j.istruc.2018.03.010

Aldemir, A., Akduman, S., Kocaer, O., Aktepe, R., Sahmaran, M., Yildirim, G., Almahmood, H. and Ashour, A., Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams, J. Build Eng., 47103861(2022).

https://doi.org/10.1016/j.jobe.2021.103861

Ali, Z. H. and Khalid, N. N., Applicability of Induction Furnace Steel Slag in RC Columns Subjected to Axial and Uniaxial Loading, Civ. Environ. Eng., 19(1), 108–118(2023).

https://doi.org/10.2478/cee-2023-0010

Aliabdo, A. A., Abd Elmoaty, A. E. M. and Salem, H. A., Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance, Constr. Build Mater., 121694–703(2016).

https://doi.org/10.1016/j.conbuildmat.2016.06.062

Alrefaei, Y., Wang, Y. S. and Dai, J. G., The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes, Cem. Concr. Compos., 97166–174(2019).

https://doi.org/10.1016/j.cemconcomp.2018.12.027

Alsaif, A. S. and Abdulrahman S. Albidah, A., Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers, Mater Today Proc, 651230–1236(2022).

https://doi.org/10.1016/j.matpr.2022.04.182

Alzeebaree, R., Çevik, A., Mohammedameen, A., Niş, A. and Gülşan, M. E., Mechanical performance of FRP-confined geopolymer concrete under seawater attack, Adv. Struct. Eng., 23(6), 1055–1073(2020).

https://doi.org/10.1177/1369433219886964

Amran, Y. H. M., Alyousef, R., Alabduljabbar, H. and El-Zeadani, M., Clean production and properties of geopolymer concrete; A review, J. Clean Prod., 251119679 (2020).

https://doi.org/10.1016/j.jclepro.2019.119679

Arunkumar, K., Muthukannan, M., Kumar, A. S., Ganesh, A. C. and Devi, R.K., Cleaner Environment Approach by the Utilization of Low Calcium Wood Ash in Geopolymer Concrete, Appl. Sci. Eng. Prog., 15(1), 1-13 (2022).

https://doi.org/10.14416/j.asep.2021.06.005

Askarian, M., Tao, Z., Samali, B., Adam, G. and Shuaibu, R., Mix composition and characterisation of one-part geopolymers with different activators, Constr. Build Mater., 225526–537(2019).

https://doi.org/10.1016/j.conbuildmat.2019.07.083

Assaedi, H., Alomayri, T., Siddika, A., Shaikh, F., Alamri, H., Subaer, S. and Low, I. M., Effect of Nanosilica on Mechanical Properties and Microstructure of PVA Fiber-Reinforced Geopolymer Composite (PVA-FRGC), Mater., 12(21), 3624(2019).

https://doi.org/10.3390/ma12213624

Bassani, M., Tefa, L., Russo, A. and Palmero, P., Alkali-activation of recycled construction and demolition waste aggregate with no added binder, Constr. Build Mater., 205398–413(2019).

https://doi.org/10.1016/j.conbuildmat.2019.02.031

Bayiha, B. N., Billong, N., Yamb, E., Kaze, R. C. and Nzengwa, R., Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite, Constr. Build Mater., 21728–35(2019).

https://doi.org/10.1016/j.conbuildmat.2019.05.058

Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R. and Maiti, S., Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review, Constr. Build Mater., 68501–516(2014).

https://doi.org/10.1016/j.conbuildmat.2014.07.003

Bernal, S. A., Mejía De Gutiérrez, R., Pedraza, A. L., Provis, J. L., Rodriguez, E. D. and Delvasto, S., Effect of binder content on the performance of alkali-activated slag concretes, Cem. Concr. Res., 41(1), 1–8(2011).

https://doi.org/10.1016/j.cemconres.2010.08.017

Bhutta, A., Farooq, M. and Banthia, N., Performance characteristics of micro fiber-reinforced geopolymer mortars for repair, Constr. Build Mater., 215605–612(2019).

https://doi.org/10.1016/j.conbuildmat.2019.04.210

Bouaissi, A., Li, L., Al Bakri Abdullah, M. M. and Bui, Q. B., Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete, Constr. Build Mater., 210198–209(2019).

https://doi.org/10.1016/j.conbuildmat.2019.03.202

Burduhos Nergis, D. D., Abdullah, M. M. A. B., Vizureanu, P. and Tahir, M. F. M., Geopolymers and Their Uses: Review, IOP Conf. Ser. Mater Sci. Eng., 374012019(2018).

https://doi.org/10.1088/1757-899X/374/1/012019

Castillo, H., Collado, H., Droguett, T., Sánchez, S., Vesely, M., Garrido, P. and Palma, S., Factors Affecting the Compressive Strength of Geopolymers: A Review, Minerals, 11(12), 1317(2021).

https://doi.org/10.3390/min11121317

Çevik, A., Alzeebaree, R., Humur, G., Niş, A. and Gülşan, M. E., Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete, Ceram. Int., 44(11), 12253–12264(2018).

https://doi.org/10.1016/j.ceramint.2018.04.009

Charkhtab Moghaddam, S., Madandoust, R., Jamshidi, M. and Nikbin, I. M., Mechanical properties of fly ash-based geopolymer concrete with crumb rubber and steel fiber under ambient and sulfuric acid conditions, Constr. Build Mater., 281122571(2021).

https://doi.org/10.1016/j.conbuildmat.2021.122571

Chen, C., Li, Q., Shen, L. and Zhai, J., Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash, Environ. Technol., 33(11), 1313–1321(2012).

https://doi.org/10.1080/09593330.2011.626797

Cheng, T. W. and Chiu, J. P., Fire-resistant geopolymer produced by granulated blast furnace slag, Miner Eng., 16(3), 205–210(2003).

https://doi.org/10.1016/S0892-6875(03)00008-6

Chindaprasirt, P. and Chalee, W., Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site, Constr. Build Mater., 63303–310(2014).

https://doi.org/10.1016/j.conbuildmat.2014.04.010

Chithambar Ganesh, A., Vinod Kumar, M., Kanniga Devi, R., Srikar, P., Prasad, S., Manoj Kumar, M. and Sarath, R. P., Pervious Geopolymer Concrete under Ambient Curing, Mater. Today Proc., 462737–2741(2021).

https://doi.org/10.1016/j.matpr.2021.02.425

Chithambaram, S. J., Kumar, S., Prasad, M. M. and Adak, D., Effect of parameters on the compressive strength of fly ash based geopolymer concrete, Struct Concr., 19(4), 1202–1209(2018).

https://doi.org/10.1002/suco.201700235

Chowdhury, S., Mohapatra, S., Gaur, A., Dwivedi, G. and Soni, A., Study of various properties of geopolymer concrete – A review, Mater. Today Proc., 465687–5695(2021).

https://doi.org/10.1016/j.matpr.2020.09.835

Cong, P. and Cheng, Y., Advances in geopolymer materials: A comprehensive review, J. Traffic Transp. Eng. Engl. Ed., 8(3), 283–314(2021).

https://doi.org/10.1016/j.jtte.2021.03.004

Constâncio, Trindade, A. C., Ribeiro De Avillez, R., Letichevsky, S. and De Andrade Silva, F., Influence of precursor materials on the fresh state and thermo-chemo-mechanical properties of sodium-based geopolymers, Ceram. Int., 48(14), 19806–19817(2022).

https://doi.org/10.1016/j.ceramint.2022.03.255

Cui, Y., Gao, K. and Zhang, P., Experimental and Statistical Study on Mechanical Characteristics of Geopolymer Concrete, Materials, 13(7), 1651(2020).

https://doi.org/10.3390/ma13071651

Das, S. K., Mustakim, S. M., Adesina, A., Mishra, J., Alomayri, T. S., Assaedi, H. S. and Kaze, C. R., Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash, J. Build Eng., 32101780(2020).

https://doi.org/10.1016/j.jobe.2020.101780

Dong, M., Elchalakani, M. and Karrech, A., Development of high strength one-part geopolymer mortar using sodium metasilicate, Constr. Build Mater., 236117611(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117611

Duan, P., Yan, C. and Luo, W., A novel waterproof, fast setting and high early strength repair material derived from metakaolin geopolymer, Constr. Build Mater., 12469–73(2016).

https://doi.org/10.1016/j.conbuildmat.2016.07.058

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A. and Van Deventer, J. S. J., Geopolymer technology: the current state of the art, J. Mater. Sci., 42(9), 2917–2933(2007).

https://doi.org/10.1007/s10853-006-0637-z

El-Wafa, M. A. and Fukuzawa, K., Optimization of Alkali-Activated Municipal Slag Composite Performance by Substituting Varying Ratios of Fly Ash for Fine Aggregate, Mater., 14(21), 6299(2021).

https://doi.org/10.3390/ma14216299

Elyamany, H. E., Abd Elmoaty, A. E. M. and Elshaboury, A. M., Setting time and 7-day strength of geopolymer mortar with various binders, Constr Build Mater., 187974–983(2018).

https://doi.org/10.1016/j.conbuildmat.2018.08.025

Farhan, N. A., Sheikh, M. N. and Hadi, M. N. S., Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete, Constr. Build Mater., 19626–42(2019).

https://doi.org/10.1016/j.conbuildmat.2018.11.083

Ferronato, N., Rada, E. C., Gorritty Portillo, M. A., Cioca, L. I., Ragazzi, M. and Torretta, V., Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization, J. Environ. Manage., 230366–378(2019).

https://doi.org/10.1016/j.jenvman.2018.09.095

Ghafoor, M. T., Khan, Q. S., Qazi, A. U., Sheikh, M. N. and Hadi, M. N. S., Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature, Constr. Build Mater., 273121752(2021).

https://doi.org/10.1016/j.conbuildmat.2020.121752

Gholampour, A., Ho, V. D. and Ozbakkaloglu, T., Ambient-cured geopolymer mortars prepared with waste-based sands: Mechanical and durability-related properties and microstructure, Compos. Part B Eng., 160519–534(2019).

https://doi.org/10.1016/j.compositesb.2018.12.057

Gülşan, M. E., Alzeebaree, R., Rasheed, A. A., Niş, A. and Kurtoğlu, A. E., Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber, Constr. Build Mater., 211271–283(2019).

https://doi.org/10.1016/j.conbuildmat.2019.03.228

Gunasekara, C., Law, D. W. and Setunge, S., Long term permeation properties of different fly ash geopolymer concretes, Constr. Build Mater., 124352–362(2016).

https://doi.org/10.1016/j.conbuildmat.2016.07.121

Guo, X., Shi, H. and Wei, X., Pore properties, inner chemical environment, and microstructure of nano-modified CFA-WBP (class C fly ash-waste brick powder) based geopolymers, Cem. Concr. Compos., 7953–61(2017).

https://doi.org/10.1016/j.cemconcomp.2017.01.007

Gupta, R., Bhardwaj, P., Mishra, D., Prasad, M. and Amritphale, S. S., Formulation of Mechanochemically Evolved Fly Ash Based Hybrid Inorganic–Organic Geopolymers with Multilevel Characterization, J. Inorg. Organomet Polym. Mater., 27(2), 385–398(2017).

https://doi.org/10.1007/s10904-016-0461-0

Hadi, M. N. S., Al-Azzawi, M. and Yu, T., Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar, Constr. Build Mater., 17541–54(2018).

https://doi.org/10.1016/j.conbuildmat.2018.04.092

Hardjito, D., Wallah, S. E., Sumajouw, D. M. and Rangan, B. V., On the development of fly ash-based geopolymer concrete, 101(6), 467–472(2004)

Hassan, A., Arif, M. and Shariq, M., Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure, J. Clean. Prod., 223704–728(2019).

https://doi.org/10.1016/j.jclepro.2019.03.051

Helmy, A. I. I., Intermittent curing of fly ash geopolymer mortar, Constr. Build Mater., 11054–64(2016).

https://doi.org/10.1016/j.conbuildmat.2016.02.007

Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K. and Ariffin, M. A. M., Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar, Ain Shams Eng. J., 9(4), 1557–1566(2018).

https://doi.org/10.1016/j.asej.2016.11.011

Istuque, D. B., Soriano, L., Akasaki, J. L., Melges, J. L. P., Borrachero, M. V., Monzó, J., Payá, J. and Tashima, M. M., Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin, Constr. Build Mater., 20395–103(2019).

https://doi.org/10.1016/j.conbuildmat.2019.01.093

Joseph, B. and Mathew, G., Influence of aggregate content on the behavior of fly ash based geopolymer concrete, Sci. Iran, 19(5), 1188–1194(2012).

https://doi.org/10.1016/j.scient.2012.07.006

Kanagaraj, B., N, A., Alengaram, U. J., Raj, R. S. B. P. and Tattukolla, K., Performance evaluation on engineering properties and sustainability analysis of high strength geopolymer concrete, J. Build Eng., 60105147(2022).

https://doi.org/10.1016/j.jobe.2022.105147

Katpady, D. N., Takewaka, K., Yamaguchi, T. and Akira, Y., Performance of slag based Shirasu geopolymer cured under ambient condition, Constr. Build Mater., 234117210(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117210

Kaur, M., Singh, J., and Kaur, M., Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin, Constr. Build Mater., 190672–679(2018).

https://doi.org/10.1016/j.conbuildmat.2018.09.157

Kearsley, E. P., Kovtun, M. and Shekhovtsova, J., Dry powder alkali-activated slag cements, Adv. Cem. Res., 27(8), 447–456(2015).

https://doi.org/10.1680/adcr.14.00078

Khaleel, Y., Koran, S. and Talib, I., An Overview of Geo-Polymer Concrete Including Recycled Aggregate, Int. J. Sci. Technol. Res., 96239–6245(2020).

Khatib, J. M., Sustainability of Construction Materials, Civ. Struct. Eng., 415–457(2016).

Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A. and Sarker, P. K., Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes, Constr. Build Mater., 205519–528(2019).

https://doi.org/10.1016/j.conbuildmat.2019.01.174

Laskar, M. S. and Talukdar, S., Influence of superplasticizer and alkali activator concentration on slag-fly ash based geopolymer, In: ASCE India Conference, New Delhi. (2018).

Lemougna, P. N. Wang, K., Tang, Q., Kamseu, E., Billong, N., Chinje Melo, U. and Cui, X., Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite, Appl. Clay Sci., 148109–117(2017).

https://doi.org/10.1016/j.clay.2017.08.015

Li, W. and Yi, Y., Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag, ConstrBuild Mater 238117713(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117713

Li, Z., Gao, M., Lei, Z., Tong, L., Sun, J., Wang, Y., Wang, X. and Jiang, X., Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism, Case Stud. Constr. Mater., 19e02410(2023).

https://doi.org/10.1016/j.cscm.2023.e02410

Liu, Y., Qin, Z. and Chen, B., Experimental research on magnesium phosphate cements modified by red mud, Constr. Build Mater., 231117131(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117131

Ma, G., Li, Z., Wang, L. and Bai, G., Micro-cable reinforced geopolymer composite for extrusion-based 3D printing, Mater. Lett., 235144–147(2019).

https://doi.org/10.1016/j.matlet.2018.09.159

Madheswaran, C. K. and Philip, P. M., Experimental and Analytical Investigations on Flexural Behaviour of Retrofitted Reinforced Concrete Beams with Geopolymer Concrete Composites, Int. J. Mater. Mech. Eng., 3(3), 62(2014).

https://doi.org/10.14355/ijmme.2014.0303.02

Mayhoub, O.A., Mohsen, A., Alharbi, Y. R., Abadel, A. A., Habib, A. O. and Kohail, M., Effect of curing regimes on chloride binding capacity of geopolymer, Ain Shams Eng. J., 12(4), 3659–3668(2021a).

https://doi.org/10.1016/j.asej.2021.04.032

Mayhoub, O. A., Nasr, E. S. A. R., Ali, Y. and Kohail, M., Properties of slag based geopolymer reactive powder concrete, Ain Shams Eng. J., 12(1), 99–105(2021b).

https://doi.org/10.1016/j.asej.2020.08.013

Mehta, A. and Siddique, R., Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties, J. Clean Prod., 20549–57(2018).

https://doi.org/10.1016/j.jclepro.2018.08.313

Mesgari, S., Akbarnezhad, A. and Xiao, J. Z., Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties, Constr. Build Mater., 236117571(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117571

Mohammed, A. A., Ahmed, H. U., and Mosavi, A., Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis, Mater., 14(16), 4690(2021).

https://doi.org/10.3390/ma14164690

Mohammed, B. S., Haruna, S., Wahab, M. M. A., Liew, M. S. and Haruna, A., Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator, Heliyon, 5(9), e02255(2019).

https://doi.org/10.1016/j.heliyon.2019.e02255

Molaei, R. E., Vaseghi Amiri, J. and Davoodi, M. R., Mechanical performance of self-compacting concrete incorporating rice husk ash, Constr. Build Mater., 177148–157(2018).

https://doi.org/10.1016/j.conbuildmat.2018.05.053

Mourougane, R., Puttappa, C. G., Sashidhar, C. and Muthu, K. U., Shear Behaviour of High Strength GPC/TVC Beams,. In: International Conference on Advances in Architecture and Civil Engineering, June 21st - 23rd, 2012. Bonfring, (2012)

Mukesh, L., Seddik, M. and Youssef, O., Performance of Portland/Silica Fume Cement Concrete Produced with Recycled Concrete Aggregate, ACI Mater. J., 10991–100(2012)

Nagrockienė, D. and Daugėla, A., Investigation into the properties of concrete modified with biomass combustion fly ash, Constr. Build Mater., 174369–375(2018).

https://doi.org/10.1016/j.conbuildmat.2018.04.125

Nath, P. and Sarker, P. K., Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Constr. Build Mater., 13022–31(2017).

https://doi.org/10.1016/j.conbuildmat.2016.11.034

Nie, Q., Hu, W., Huang, B., Shu, X. and He, Q., Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation, J. Hazard Mater., 369503–511(2019).

https://doi.org/10.1016/j.jhazmat.2019.02.059

Nkwaju, R.Y., Djobo, J. N. Y., Nouping, J. N. F., Huisken, P. W. M., Deutou, J. G. N., and Courard, L., Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties, Appl. Clay Sci., 183105333(2019).

https://doi.org/10.1016/j.clay.2019.105333

Noushini, A., Aslani, F., Castel, A., Gilbert, R. I., Uy, B., and Foster, S., Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete, Cem. Concr. Compos., 73136–146(2016).

https://doi.org/10.1016/j.cemconcomp.2016.07.004

Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V. and Chindaprasirt, P., Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete, J. Clean Prod., 252119797(2020).

https://doi.org/10.1016/j.jclepro.2019.119797

Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P. and Chindaprasirt, P., Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber, J. Build Eng., 41102403(2021).

https://doi.org/10.1016/j.jobe.2021.102403

Nuaklong, P., Wongsa, A., Sata, V., Boonserm, K., Sanjayan, J. and Chindaprasirt, P., Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate, Heliyon, 5(9), e02513(2019).

https://doi.org/10.1016/j.heliyon.2019.e02513

Part, W. K., Ramli, M. and Cheah, C. B., An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products, Constr. Build Mater., 77370–395(2015).

https://doi.org/10.1016/j.conbuildmat.2014.12.065

Poloju, K. K. and Srinivasu, Kota., Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing, Mater. Today Proc., 42962–968(2021).

https://doi.org/10.1016/j.matpr.2020.11.934

Prasanphan, S., Wannagon, A., Kobayashi, T. and Jiemsirilers, S., Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution, Constr. Build Mater., 221409–420(2019).

https://doi.org/10.1016/j.conbuildmat.2019.06.116

Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A. and Rossignol, S., In situ inorganic foams prepared from various clays at low temperature, Appl. Clay Sci., 51(1–2), 15–22(2011).

https://doi.org/10.1016/j.clay.2010.10.016

Rabiaa, E., Mohamed, R. A. S., Sofi, W. H. and Tawfik, T. A., Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers, Adv. Mater. Sci. Eng., 2020(1), 5186091(2020).

https://doi.org/10.1155/2020/5186091

Ramujee, K. and PothaRaju, M., Mechanical Properties of Geopolymer Concrete Composites, Mater. Today Proc., 4(2), 2937–2945(2017).

https://doi.org/10.1016/j.matpr.2017.02.175

Rashad, A. M., A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer, Int J. Sustain. Built Environ., 4(2), 278–306(2015).

https://doi.org/10.1016/j.ijsbe.2015.10.002

Rathinam, K., S., S., S.P., V., M., V. and U., N. K., Properties of nano silica modified cement less geopolymer composite mortar using fly ash and GGBS, Mater. Today Proc., 62535–542(2022).

https://doi.org/10.1016/j.matpr.2022.03.589

Ren, D., Yan, C., Duan, P., Zhang, Z., Li, L. and Yan, Z., Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack, Constr. Build Mater., 13456–66(2017).

https://doi.org/10.1016/j.conbuildmat.2016.12.103

Rożek, P., Król, M. and Mozgawa, W., Geopolymer-zeolite composites: A review, J. Clean Prod., 230557–579(2019).

https://doi.org/10.1016/j.jclepro.2019.05.152

Rutkowska, G., Wichowski, P., Fronczyk, J., Franus, M. and Chalecki, M., Use of fly ashes from municipal sewage sludge combustion in production of ash concretes, Constr. Build Mater., 188874–883(2018).

https://doi.org/10.1016/j.conbuildmat.2018.08.167

Ryu, G. S., Lee, Y. B., Koh, K. T. and Chung, Y. S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Constr. Build Mater., 47409–418(2013).

https://doi.org/10.1016/j.conbuildmat.2013.05.069

Saravanan, S., Nagajothi, S. and Elavenil, S., Investigation OnCompressive Strength Development Of Geopolymer Concrete Using Manufactured Sand, Mater. Today Proc., 18114–124(2019).

https://doi.org/10.1016/j.matpr.2019.06.284

Scrivener, K. L., John, V. M. and Gartner, E. M., Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res., 1142–26(2018).

https://doi.org/10.1016/j.cemconres.2018.03.015

Shehab, H. K., Eisa, A. S. and Wahba, A. M., Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement, Constr. Build Mater., 126560–565(2016).

https://doi.org/10.1016/j.conbuildmat.2016.09.059

Siddika, A., Mamun, Md. A. A. and Ali, Md.H., Study on concrete with rice husk ash, Innov. Infrastruct. Solut., 3(1), 18(2018).

https://doi.org/10.1007/s41062-018-0127-6

Silva, G., Kim, S., Aguilar, R. and Nakamatsu, J., Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry, Sustain. Mater. Technol., 23e00132(2020).

https://doi.org/10.1016/j.susmat.2019.e00132

Subaer., Haris, A., Irhamsyah, A., Akifah, N. and Amalia, N.S., Physico-Mechanical Properties of Geopolymer Based on Laterite Deposit Sidrap, South Sulawesi, J. Phys. Conf. Ser., 1244(1), 012037(2019).

https://doi.org/10.1088/1742-6596/1244/1/012037

Subaer, H. A., Nurhayati., Irhamsyah, A. and Ekaputri, J. J., The Influence of Si:Al and Na:Al on the Physical and Microstructure Characters of Geopolymers Based on Metakaolin, Mater. Sci. Forum, 841170–177(2016).

https://doi.org/10.4028/www.scientific.net/MSF.841.170

Tan, J., Cai, J., Li, X., Pan, J. and Li, J., Development of eco-friendly geopolymers with ground mixed recycled aggregates and slag, J. Clean. Prod., 256120369(2020).

https://doi.org/10.1016/j.jclepro.2020.120369

Tchakouté, H. K. and Rüscher, C. H., Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study, Appl. Clay Sci., 14081–87(2017).

https://doi.org/10.1016/j.clay.2017.02.002

Tho-in, T., Sata, V., Chindaprasirt, P. and Jaturapitakkul, C., Pervious high-calcium fly ash geopolymer concrete, Constr. Build Mater., 30366–371(2012).

https://doi.org/10.1016/j.conbuildmat.2011.12.028

Tosti, L., Van. Z. A., Pels, J. R. and Comans, R. N. J., Technical and environmental performance of lower carbon footprint cement mortars containing biomass fly ash as a secondary cementitious material, Resour. Conserv. Recycl., 13425–33(2018).

https://doi.org/10.1016/j.resconrec.2018.03.004

Tuyan, M., Andiç-Çakir, Ö. and Ramyar, K., Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer, Compos. Part B Eng., 135242–252(2018).

https://doi.org/10.1016/j.compositesb.2017.10.013

Vaičiukynienė, D., Nizevičienė, D., Kielė, A., Janavičius, E. and Pupeikis, D., Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag, Constr. Build Mater., 184485–491(2018).

https://doi.org/10.1016/j.conbuildmat.2018.06.213

Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F. and Gomez, A. C., Evaluation of activated high volume fly ash systems using Na 2 SO 4 , lime and quicklime in mortars with high loss on ignition fly ashes, Constr. Build Mater., 128248–255(2016).

https://doi.org/10.1016/j.conbuildmat.2016.10.076

Wang, Y., Liu, X., Zhang, W., Li, Z., Zhang, Y., Li, Y. and Ren, Y., Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer, J. Clean Prod., 244118852(2020).

https://doi.org/10.1016/j.jclepro.2019.118852

Wongpa, J., Kiattikomol, K., Jaturapitakkul, C. and Chindaprasirt, P., Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete, Mater. Des., 31(10), 4748–4754(2010).

https://doi.org/10.1016/j.matdes.2010.05.012

Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V. and Chindaprasirt, P., Natural fiber reinforced high calcium fly ash geopolymer mortar, Constr. Build Mater., 241118143(2020).

https://doi.org/10.1016/j.conbuildmat.2020.118143

Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C., Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate, Compos. Part B Eng., 164179–190(2019).

https://doi.org/10.1016/j.compositesb.2018.11.067

Yadav, A. L., Sairam, V., Muruganandam, L. and Srinivasan, K., An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material, J. Clean Prod., 245118854(2020).

https://doi.org/10.1016/j.jclepro.2019.118854

Yang, Z., Mocadlo, R., Zhao, M., Sisson, R. D., Tao, M. and Liang, J., Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures, Constr. Build Mater., 221308–317(2019).

https://doi.org/10.1016/j.conbuildmat.2019.06.034

Yeddula, B. S. R. and Karthiyaini, S., Experimental investigations and GEP modelling of compressive strength of ferrosialate based geopolymer mortars, Constr. Build Mater., 236117602(2020).

https://doi.org/10.1016/j.conbuildmat.2019.117602

Yousefi, O. S., Chen, B., Ahmad, M. R. and Shah, S.F.A., Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators, J. Clean Prod., 2251–10(2019).

https://doi.org/10.1016/j.jclepro.2019.03.290

Youssf, O., Elchalakani, M., Hassanli, R., Roychand, R., Zhuge, Y., Gravina, R. J. and Mills, J. E., Mechanical performance and durability of geopolymer lightweight rubber concrete, J. Build Eng., 45103608(2022).

https://doi.org/10.1016/j.jobe.2021.103608

Zawrah, M. F., Gado, R. A., Feltin, N., Ducourtieux, S. and Devoille, L., Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production, Process Saf. Environ. Prot., 103237–251(2016).

https://doi.org/10.1016/j.psep.2016.08.001

Zhang, H. Y., Qiu, G. H., Kodur, V. and Yuan, Z. S., Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure, Cem. Concr. Compos., 106103483(2020).

https://doi.org/10.1016/j.cemconcomp.2019.103483

Zhang, S. P. and Zong, L., Evaluation of Relationship between Water Absorption and Durability of Concrete Materials, Adv. Mater. Sci. Eng., 20141–8(2014).

https://doi.org/10.1155/2014/650373

Contact Us

Powered by

Powered by OJS