Open Access

In Situ Synthesis of ZnCo2O4 and Pd@ZnCo2O4 Nanocomposites for Dye Degradation and Biological Applications

Supriya Gumma, Department of Chemistry, GITAM School of Sciences, GITAM (Deemed to be University), Hyderabad, TG, India
Department of Chemistry, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, AP, India
Puthalapattu Reddy Prasad, Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad, TG, India Sandhya Punyasamudram, Department of Chemistry, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, AP, India Adikay Sreedevi, Department of Chemistry, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, AP, India Venkata Nagendra Kumar Putta, Department of Chemistry, GITAM School of Sciences, GITAM (Deemed to be University), Hyderabad, TG, India Phani Raja Kanuparthy pkanupar@gitam.edu
Department of Chemistry, GITAM School of Sciences, GITAM (Deemed to be University), Hyderabad, TG, India


J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 41-51

https://doi.org/10.13074/jent.2024.09.242735

PDF


Abstract

In this study, ZnCo2O4 and Pd@ZnCo2O4 were synthesized through a novel phytochemical process using the leaf extract of Catharanthus roseus for photocatalytic and biological applications. The synthesized nanoparticles were characterized through X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and UV-Visible spectroscopy. The photocatalytic activities of ZnCo2O4 and Pd@ZnCo2O4 (10 mg) were evaluated after 40 min of reaction by degrading brilliant blue dye (100 µg/mL solution), achieving 42% and 97% degradation, respectively. This green synthesis method for ZnCo2O4 and Pd@ZnCo2O4 proves to be an eco-friendly, modest, and effective approach for the photodegradation of brilliant blue dye in an aqueous medium. Additionally, the ZnCo2O4 and Pd@ZnCo2O4 catalysts were also tested for their antibacterial and antioxidant activities.

Full Text

Reference


Akbar, K. I., Rutuja, S. R., Nitin, R. H., Ashok, S. K., Bapusaheb, H. S., Shashikant, P. P., Satish, B. S. and Shaukatali, N. I., A review on environmental applications of metal oxide nanoparticles through waste water treatment, Mater. Today Proc., (2023)

https://doi.org/10.1016/j.matpr.2023.05.527

Amin, S. D., Seyed, S. H., Majid, R. A., Mahin, N. and Naghmeh, S., Mentha pulegium as a source of green synthesis of nanoparticles with antibacterial, antifungal, anticancer, and antioxidant applications, Sci. Hortic., 320, 112215 (2023).

https://doi.org/10.1016/j.scienta.2023.112215

Arighna, S., Prashant, M., Goutam, B. and Snehasis, B., Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications, RSC Adv., 14(16), 11197-11216 (2024).

https://doi.org/10.1039/d4ra01047g

Aynur, Ş., Şakir, A. and Kadriye, K., An approach for cationic dyes removal from wastewater: Green synthesis of iron nanoparticles using Prunus avium stems extracts, Kuwait J. Sci., 51(3), 100226 (2024).

https://doi.org/10.1016/j.kjs.2024.100226

Ayush, B. and Jai, P., Noble metal nanoparticles and graphene oxide-based hybrid nanostructures for antibacterial applications: Recent advances, synergistic antibacterial activities, and mechanistic approaches, Micro Nano Eng., 22, 100239 (2024).

https://doi.org/10.1016/j.mne.2024.100239

Bo, X., Ye, C., Qiyong, Z., Shouling, D. and Shiliu, Y., Controllable synthesis of ZnCo2O4@NiCo2O4 hierarchical nanosheets for high performance supercapacitors, J. Phys. Chem. Solids, 184, 111744 (2024).

https://doi.org/10.1016/j.jpcs.2023.111744

Cheng, Z. Y., Siyu, H., Hongrui, Z., Jiang, L., Lunliang, Z., Yao, W., Tuck-Yun, C., Hong, Y., Xiaomeng, Z. and Shufeng, Y., Vacancy defect tuning of electronic structures of transition metal (hydr)oxide-based electrocatalysts for enhanced oxygen evolution, Energy Adv., 2(1), 73-85 (2023).

https://doi.org/10.1039/d2ya00281g

Debasis, M., Priyanka, A., Rihab, D., Pooja, T., Kuldeep, J., Marika, P., Nurudeen, O. A., Bahman, K., Kamaljit, K., Ankita, P., Ansuman, S., Maddalena, D. G., Pradeep, K. D. M., Amaresh, K. N., Vijayakumar, S. and Periyasamy, P., Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science, Plant Physiology and Biochemistry, 196, 103-120 (2023).

https://doi.org/10.1016/j.plaphy.2023.01.017

Do, A. T. T., Giang, H. T., Do, T. T., Pham, N. Q. and Ho, G. T., Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles, Beilstein J. Nanotechnol. 5, 1261–1267 (2014).

https://doi.org/10.3762/bjnano.5.140

Eneyew, T. B., Yilkal, D. S., Bedasa, A. G., Fedlu, K. S., Mikyas, K. S., Ravikumar, C. R., Naveen, K., Ananda, M., Green synthesis of ternary ZnO/ZnCo2O4 nanocomposites using Ricinus communis leaf extract for the electrochemical sensing of sulfamethoxazole, Inorg. Chem. Commun., 160, 111964 (2024).

https://doi.org/10.1016/j.inoche.2023.111964

Femina, C. C. and Kamalesh, T., Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends, Heliyon, 10(9), e29773 (2024).

https://doi.org/10.1016/j.heliyon.2024.e29773

Flores-Lasluisa, J. X., Huerta, F., Cazorla-Amorós, D., Morallón, E., Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications, Environ. Res., 214(1), 113731 (2022).

https://doi.org/10.1016/j.envres.2022.113731

Hafsah, A., Fahad, H. A. Julie, M., Thomas, A., Jawwad, A. D., Ihtesham, U. R., Aqif, A. C. and Gwendolen, R., Synthesis of cerium, zirconium, and copper doped zinc oxide nanoparticles as potential biomaterials for tissue engineering applications, Heliyon, 10(7), e29150 (2024).

https://doi.org/10.1016/j.heliyon.2024.e29150

Hamdullah, S., Rima, N. E. T., Ismet, M., Aysenur, A., Meliha, K. G. and Fatih, S., An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications, Environ. Res., 208, 112708 (2022).

https://doi.org/10.1016/j.envres.2022.112708

Hammed, M. L., Gulbagca, F., Nour, E. T. R., Aygun, A., Bekmezci, M. and Fatih, S., Hydrothermal-assisted synthesis of Co-doped ZnO nanoparticles catalyst for sodium borohydride dehydrogenation and photodegradation of organic pollutants in water, Chem. Eng. J. Adv., 14, 100495 (2023).

https://doi.org/10.1016/j.ceja.2023.100495

Huaxing, L., Fafeng, X., Chunyang, M., Chaoyu, L., Magnetic field-assisted electrodeposition of ZnCo2O4-rGo nanoelectrodes for enhanced supercapacitor performance, Chem. Eng. J., 152003 (2024).

https://doi.org/10.1016/j.cej.2024.152003

Jiajun, W., Fengyu, G., Hengheng, L., Junyi, W., Tingkai, X., Honghong, Y., Yuansong, Z., Qingjun, Y., Shunzheng, Z. and Xiaolong, T., Metallic nanoparticles synthesized by algae: Synthetic route, action mechanism, and the environmental catalytic applications, J. Environ. Chem. Eng., 12(1), 111742 (2024).

https://doi.org/10.1016/j.jece.2023.111742

Jothirathinam, T., Muthukrishnan, F. P., Violet, D., Bavatharani, C., Jayakumar, P., Cyril, A. C. T., Annadurai, K. and Ragupathy, D., Facile synthesis of Co3O4@Se NPs grafted MWCNTs Nanocomposite for high energy density supercapacitor and antimicrobial applications, Chem. Phys. Impact, 7, 100253 (2023).

https://doi.org/10.1016/j.chphi.2023.100253

Khalid, S., Idrees, K., Tamanna, G. and Mohammad, S., Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts, Appl. Water Sci., 7, 3841–3848 (2017).

https://doi.org/10.1007/s13201-017-0535-3

Kok, B. T., Daohua, S., Jiale, H., Tareque, O., Qingbiao, Li., State of arts on the bio-synthesis of noble metal nanoparticles and their biological application, Chin. J. Chem. Eng., 30, 272-290, (2021).

https://doi.org/10.1016/j.cjche.2020.11.010

Layth, L. H., Muthanna, H. H., Ahmed, S. O., Chitosan aerogel loaded with biogenic palladium nanoparticles CH/Pd NPs exert antibacterial activity and wound addressing application in vitro and in vivo against bacterial skin infections, J. Mol. Struct., 1315, 138983 (2024).

https://doi.org/10.1016/j.molstruc.2024.138983

Li, B., Wang, R., Shao, X., Shao, L. and Zhang, B., Synergistically enhanced photocatalysis from plasmonics and a co-catalyst in Au@ZnO–Pd ternary core–shell nanostructures, Inorg. Chem. Front., 4, 2088–2096 (2017).

https://doi.org/10.1039/C7QI00586E

Madhuree, K., Shipra, P., Ved, P. G., Chandra S. N. and Aradhana, M., A critical review on green approaches in shape and size evolution of metal nanoparticles and their environmental applications, Environ. Nanotechnol. Monit. Manage., 20, 100895 (2023).

https://doi.org/10.1016/j.enmm.2023.100895

Maha, A., Adel, A. I., Yousef, G. A., Nada, D. A. and Reda, M. M., Co3O4 Nanoparticles Accommodated Mesoporous TiO2 framework as an Excellent Photocatalyst with Enhanced Photo-catalytic Properties, Opt. Mater., 131, 112643 (2022),

https://doi.org/10.1016/j.optmat.2022.112643

Mohammad, A. T. S. and Hassan, K., Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films, Results Eng., 21, 101808 (2024).

https://doi.org/10.1016/j.rineng.2024.101808

Mohammed, A. D., Nazila, O., Azlan, A. A., Pegah, M. K., Mushtak, T. S. A., Mahmood, S. J., Farhank, S. B., Baharak, M. and Mehran, G., Recent advances of plant-mediated metal nanoparticles: Synthesis, properties, and emerging applications for wastewater treatment, J. Environ. Chem. Eng., 12(2), 112345 (2024).

https://doi.org/10.1016/j.jece.2024.112345

Mohwes, N. M., Khawla, K. J. and Ayad, F. A., Photo-catalytic degradation of Brilliant green dye by using ZnO-CdS/Pd nanocomposite, Journal of Nanostructures, 113951, 2251-7871 (2023).

Monireh, G., Pedram, E., Zahra, R.G., Ahmad, N., Ali, D., Rezvan, K., Mina, A. and Tahoora, M., Green tea-mediated synthesis of silver nanoparticles: Enhanced anti-cancer activity and reduced cytotoxicity melanoma and normal murine cell lines, Inorg. Chem. Commun., 161, 111989 (2024).

https://doi.org/10.1016/j.inoche.2023.111989

Mouhaned, Y. A., Sattar, S. I. and Mohammed, A. M., A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications, Results Chem., 7, 101368 (2024).

https://doi.org/10.1016/j.rechem.2024.101368

Nada, Y. T. and Reda, M. M., Sol-gel assembled MnCo2O4/rGO photocatalyst for enhanced production of aniline from photoreduction of nitrobenzene under visible light, Ceram. Int., 48(9), 13216-13228 (2022).

https://doi.org/10.1016/j.ceramint.2022.01.199

Pore, O. C., Fulari, A. V., Shejwal, R. V., Fulari, V. J. and Lohar, G. M., Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices, Chem. Eng. J., 426, 131544 (2021).

https://doi.org/10.1016/j.cej.2021.131544

Prasad, P. R., Kanchi, S. and Naidoo, E. B., In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach, J. Photochem. Photobiol., B, 161, 375-382 (2016).

https://doi.org/10.1016/j.jphotobiol.2016.06.008

Priya, M., Premkumar, V. K. and Vasantharani, P., Sivakumar, G., Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method, Vacuum, 167, 307-312 (2019).

https://doi.org/10.1016/j.vacuum.2019.06.020

Punyasamudram, S., Reddy, P. P., Ayyappa, B., Ravikumar, M., Kanchi, S. and Nagendra, K. P. V., Multifunctional characteristics of biosynthesized CoFe2O4@Ag nanocomposite by photo-catalytic, antibacterial and cytotoxic applications, Chemosphere, 349, 140892 (2024),

https://doi.org/10.1016/j.chemosphere.2023.140892

Rahman, A. M., Bayazeed, H. A., Heshu, S. R., Synthesis, cytotoxic, antibacterial, antioxidant activities, DFT, and docking of novel complexes of Palladium (II) containing a thiourea derivative and diphosphines, J. Mol. Struct., 1295, 136519 (2024).

https://doi.org/10.1016/j.molstruc.2023.136519

Rashmi, V. B., Green synthesis and Applications of Metal Nanoparticles - A Review Article, Results in Chemistry, 5, 2211-7156 (2023),

https://doi.org/10.1016/j.rechem.2023.100832

Rosa, M. D. C., Jaime, V., Victor, R. J., Javier, Villa, E. L. and Adolfo, L. R., Green synthesis and characterization of silver nanoparticles using grape stalk extract, J. Mol. Liq., 403, 124927 (2024).

https://doi.org/10.1016/j.molliq.2024.124927

Rui, J., Shuangming, W., Mengying, D., Lifang, Z., Jing, C., Yi, Z., Mingzhe, Z., Yongming, S., Temperature-dependent formaldehyde and xylene dual selectivity in ZnCo2O4 sphere-like architectures, Colloids Surf., A, 675, 132042 (2023).

https://doi.org/10.1016/j.colsurfa.2023.132042

Sabahat, F., Muhammad, N. A., Ihsan, H., Syed, W. A. S. and Muhammad, W., Green synthesis of cobalt ferrite and Mn doped cobalt ferrite nanoparticles: Anticancer, antidiabetic and antibacterial studies, J. Trace Elem. Med. Biol., 80, 127292 (2023).

https://doi.org/10.1016/j.jtemb.2023.127292

Sandhya, P., Reddy Prasad, P., Ayyappa, B., Kanchi, S. and Jyothi, S., Nagendra Kumar, P.V., Biosynthesis of ZnFe2O4@Ag hybrid nanocomposites for degradation of 2,4-Dichlorophenoxyacetic acid herbicide, Chem. Phys. Impact, 7, 100282 (2023).

https://doi.org/10.1016/j.chphi.2023.100282

Sebastian, C. J., Subramani, S., Dae, J. M., Sathyanarayanan, S., Joon, Y. K., Gnanaprakasam, J., Krishnan, V., Shivraj, M., Goo, K., Pildo, J., Gibum, K., Kyoungsuk, J., Jung, K. K., Kootak, H., Yong, I. P., Tae-Hoon, K., Jaeyeong, H. and Uk, S., Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting, J. Colloid Interface Sci., 663, 566-576 (2024).

https://doi.org/10.1016/j.jcis.2024.02.042

Seung, J. L., Hyeon, J. J., Ravindranadh, K., Seung, H. L., Malathi, A., Ju, H. K. and Myong, Y. C., ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photo-catalytic activity for methylene blue degradation under visible light irradiation, Appl. Surf. Sci., 496, 143665 (2019).

https://doi.org/10.1016/j.apsusc.2019.143665

Shankar, G. R., Balkrishna, J. L., Utilization of spray pyrolyzed porous nickel cobaltite electrode as an advanced material for NiCo2O4@Graphite asymmetric supercapacitor device, Inorg. Chem. Commun., 161, 112099 (2024).

https://doi.org/10.1016/j.inoche.2024.112099

Siyuan, W., Ding, C., Qiu H., Ying G., Yucheng, C., Guanlin, R. and Zhao, L., Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A review, J. Mol. Liq., 389, 122821 (2023).

https://doi.org/10.1016/j.molliq.2023.122821

Sunaina, S., Prakash, C., Aman, J., Fabrication of ultrahigh supercapacitor device based on ZnCo2O4@MnO2 with porous nanospheres decorated on flower-shaped structure, J. Energy Storage, 71, 108209 (2023).

https://doi.org/10.1016/j.est.2023.108209

Tholkappiyan, R., Fathalla, H., Fabrication of dual-1D/2D shaped ZnCo2O4-ZnO electrode material for highly efficient electrochemical supercapacitors, J. Phys. Chem. Solids, 188, 111915 (2024).

https://doi.org/10.1016/j.jpcs.2024.111915

Uyiosa, O. A. and Otolorin, A. O., Green synthesis of metal oxide nanoparticles, and their various applications, J. Hazard. Mater. Adv., 13, 100401 (2024).

https://doi.org/10.1016/j.hazadv.2024.100401

Varunamugi, R., Mathu, M. K., Arun, P. C., Sathyaseelan, T., Sathiyaraj, S., Prakash, T., Vandamar, P. R., Ranjith, K. E. and Aruna, D. N., Synthesis and characterization of Co3O4, CuO and NiO and nanoparticles: Evaluation of structural, vibrational, morphology and thermal properties, Phys. Lett. A, 512, 129574 (2024).

https://doi.org/10.1016/j.physleta.2024.129574

Vinod, K., Naveen, K. K., Tiwari, S. K., Davender, S. and Bijender, S., Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications, Int. J. Biol. Macromol., 253(4), 127017 (2023).

https://doi.org/10.1016/j.ijbiomac.2023.127017

Zikirina, A., Kadyrzhanov, K. K., Kenzhina, I. E., Kozlovskiy, A. L. and Zdorovets, M. V., Study of defect formation processes under heavy ion irradiation of ZnCo2O4 nanowires, Opt. Mater., 118, 111282 (2021).

https://doi.org/10.1016/j.optmat.2021.111282

Contact Us

Powered by

Powered by OJS