Multifaceted Analysis of L-Alanine-Doped Creatininium Benzene Sulphonate Single Crystals for Optical Modulation Application
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 374-384
Abstract
Creatininium Benzene Sulphonate (CBS) and L-Alanine-doped Creatininium Benzene Sulphonate (ACBS) single crystals were grown using the slow evaporation technique. Xpert HighScore software was utilized to determine lattice parameters including Full Width at Half Maximum (FWHM), crystallite size, and lattice strain. Fourier transform infrared spectroscopy was used to identify the functional groups present in the samples. The thermal properties of CBS and ACBS crystals were analyzed using Thermogravimetric and Differential Thermal Analysis. Optical properties including optical conductivity, extinction coefficient, and refractive index were measured using UV-Vis spectroscopy. The mechanical characteristics of both samples were studied using Vicker’s microhardness testing, and the dielectric response was recorded for various frequencies. The second harmonic generation values of samples were compared to those of potassium dihydrogen phosphate. Overall, CBS and ACBS crystals demonstrate promising characteristics as sustainable materials for optical modulation. Incorporating amino acids, such as L-Alanine, enhances the photoconductive properties of the crystals by improving charge carrier mobility and reducing recombination rates, resulting in more efficient optical modulation. This study explores the impact of doping single crystals with amino acids on their optoelectronic and dielectric properties for potential applications in optical modulation devices. Specifically, this research investigates the role of L-Alanine, a zwitterionic amino acid, in enhancing the performance of CBS single crystals, with the aim of optimizing their structural, thermal, optical, and mechanical properties for optical modulation. These findings highlight the potential of amino acid-doped single crystals in advancing optical devices, driving innovations in optoelectronics and photonics.
Full Text
Reference
Ananda Kumari, R., Optical and SHG Measurements of Aminoacids doped ADP NLO crystals, MRS Adv., 5, 1955–1963 (2020).
https://doi.org/10.1557/adv.2020.265
Aslfattahi, N., Rahman, S., Mohd Sabri, M. F. and Arifutzzaman, A., Experimental Investigation of Thermal Stability and Enthalpy of Eutectic Alkali Metal Solar Salt Dispersed with MgO Nanoparticles, Int. J. Technol., 10(6), 1112 (2019).
https://doi.org/10.14716/ijtech.v10i6.3568
Atinafu, D. G., Yun, B. Y., Yang, S. and Kim, S., Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage, Chem. Eng. J., 437, 135407 (2022).
https://doi.org/10.1016/j.cej.2022.135407
Sahaya, B. I. L., Muthu, S. P., P., K., B., G. and P., R., Synthesis, crystal growth and characterization of organic 1,2,4-triazole p-nitrophthalic acid (TPNP) single crystal for nonlinear optical (NLO) applications, Inorg. Chem. Commun., 158, 111549 (2023).
https://doi.org/10.1016/j.inoche.2023.111549
Bassett, L. C., Alkauskas, A., Exarhos, A. L. and Fu, K.-M. C., Quantum defects by design, Nanophotonics, 8(11), 1867–1888 (2019).
https://doi.org/10.1515/nanoph-2019-0211
Chakaravarthy, R., Tao, J., Liu, C., Liu, Y., Ren, W. andEzhil Vizhi, R., Potassium trihydrogen dioxalate dihydrate (KTO) nonlinear optical (NLO) single crystal for optical limiting application, Results Phys., 51, 106732 (2023).
https://doi.org/10.1016/j.rinp.2023.106732
Chandra Kandpal, B., Gupta, D. K., Kumar, A., Kumar Jaisal, A., Kumar Ranjan, A., Srivastava, A. and Chaudhary, P., Effect of heat treatment on properties and microstructure of steels, Mater. Today Proc., 44, 199–205 (2021).
https://doi.org/10.1016/j.matpr.2020.08.556
Durgababu, G., Swati, G., Vijayan, N., Maurya, K. K., Kamalesh, T., Nagaraju, G. J. and Bhagavannarayana, G., Influence of l-Phenylalanine doping on potassium dihydrogen phosphate: crystal growth, structural, optical and mechanical traits, J. Mater. Sci. Mater. Electron., 32(5), 5698–5712 (2021).
https://doi.org/10.1007/s10854-021-05291-0
Feng, Y., Lin, S., Huang, S., Shrestha, S. and Conibeer, G., Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?, J. Appl. Phys., 117(12), 1–15 (2015).
https://doi.org/10.1063/1.4916090
Gu, B., Cavaletto, S. M., Nascimento, D. R., Khalil, M., Govind, N. and Mukamel, S., Manipulating valence and core electronic excitations of a transition-metal complex using UV/Vis and X-ray cavities, Chem. Sci., 12(23), 8088–8095 (2021).
https://doi.org/10.1039/D1SC01774H
Henning, F. G., Schnitzler, E., Demiate, I. M., Lacerda, L. G., Ito, V. C., Malucelli, L. C. and da Silva Carvalho Filho, M. A., Fortified Rice Starches: The Role of Hydrothermal Treatments in Zinc Entrapment, Starch - Stärke, 71(1–2), 1–8 (2018).
https://doi.org/10.1002/star.201800130
Ilbay, S. G., Güvener, S. and Alkumru, H. N., Processing dentures using a microwave technique, J. Oral Rehabil., 21(1), 103–109 (1994).
https://doi.org/10.1111/j.13652842.1994.tb01129x
Jubu, P. R., Yam, F. K., Igba, V. M. and Beh, K. P., Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3, J. Solid State Chem., 290, 121576 (2020).
https://doi.org/10.1016/j.jssc.2020.121576
Kiran, Vijayan, N., Sarkar, N., Joshi, D., Jyoti, Kumar, K., Yadav, S. and Das, S., Unveiling the optical, thermal and nonlinear behavior of guanidinium benzenesulfonate: A promising organic single crystal for NLO applications, Opt. Mater. (Amst)., 147, 114683 (2024).
https://doi.org/10.1016/j.optmat.2023.114683
Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J. and Bacher, G., Limitations of the Tauc Plot Method, Adv. Funct. Mater., 33, 1–19 (2023).
https://doi.org/10.1002/adfm.202304523
Li, X., Wu, F., Yao, Y., Wu, W., Ji, C., Li, L., Sun, Z., Luo, J. and Liu, X., Robust Spin-Dependent Anisotropy of Circularly Polarized Light Detection from Achiral Layered Hybrid Perovskite Ferroelectric Crystals, J. Am. Chem. Soc., 144(31), 14031–14036 (2022).
https://doi.org/10.1021/jacs.2c06048
Matsui, T., Tsujikawa, K., Imai, T., Akage, Y., Sakamoto, T., Hanzawa, N., Sagae, Y., Nakajima, K. and Morimura, H., Optical Fiber and Optical Device Technology for Innovative Manufacturing, NTT Tech. Rev., 17(6), 41–44 (2019).
https://doi.org/10.53829/ntr201906fa12
Matthias, B. and von Hippel, A., Domain Structure and Dielectric Response of Barium Titanate Single Crystals, Phys. Rev., 73(11), 1378–1384 (1948).
https://doi.org/10.1103/PhysRev.73.1378
Purushothaman, P., Gopathy, R., Raju, E., Durairaj, N., Kandhan, S. and Mani, G., Structural, linear and nonlinear optical, electrical and NBO reports on 4-aminopyridine-1-ium 4-aminobenzoate single crystal for SHG, optoelectronics and violet laser emission applications, J. Mater. Sci. Mater. Electron., 32(17), 22342–22361 (2021).
https://doi.org/10.1007/s10854-021-06720-w
Purusothaman, R., Shankar, M., Dennis Raj, A., Vimalan, M. and Vetha Potheher, I., A study on NLO, ultraviolet transparency, photoconductivity, and dielectric response of organic single crystal, J. Mater. Sci. Mater. Electron., 34(36), 2292 (2023).
https://doi.org/10.1007/s10854-023-11691-1
Ramesh, V., Third order nonlinear materials of: L–threonine hydrochloride and zinc chloride doped L – threonine hydrochloride, Mater. Today Proc., 33, 4044–4046 (2020).
https://doi.org/10.1016/j.matpr.2020.06.429
Rao, E. N., Vaitheeswaran, G., Reshak, A. H. and Auluck, S., Effect of lead and caesium on the mechanical, vibrational and thermodynamic properties of hexagonal fluorocarbonates: a comparative first principles study, RSC Adv., 6(102), 99885–99897 (2016).
https://doi.org/10.1039/C6RA20408B
Rao, V., Singh, P. K. and Dwivedi, D. K., Effect of third element on thermo-mechanical properties of Se-Te-M (M= Ge, Sb) glassy alloys: A comparatively study, In: AIP Conference Proceedings, p 120002 (2020).
https://doi.org/10.1063/5.0001767
Sánchez, T. J. L., Marzoa, V., Bernardo-Gavito, R., Pau, J. L. and Granados, D., Hands-On Quantum Sensing with NV− Centers in Diamonds, C- J. Carbon Res., 9(1), 16 (2023).
https://doi.org/10.3390/c9010016
Shi, Z., Wang, Y., Xiao, T., Dong, S. and Lan, T., Preparation and Thermal Decomposition Kinetics of a New Type of a Magnetic Targeting Drug Carrier, ACS Omega, 6(4), 3427–3433 (2021).
https://doi.org/10.1021/acsomega.0c06075
Tailor, N. K., Maity, P., Saidaminov, M. I., Pradhan, N. and Satapathi, S., Dark Self-Healing-Mediated Negative Photoconductivity of a Lead-Free Cs 3 Bi 2 Cl 9 Perovskite Single Crystal, J. Phys. Chem. Lett., 12(9), 2286–2292 (2021).
https://doi.org/10.1021/acs.jpclett.1c00057
Tian, H., Lin, C., Zhao, X., Xu, F., Wang, C., Ye, N. and Luo, M., Ba(SO 3 CH 3 ) 2 : A Deep-Ultraviolet Transparent Crystal with Excellent Optical Nonlinearity Based on a New Polar Non-π-Conjugated NLO Building Unit SO 3 CH 3 −, CCS Chem., 5(11), 2497–2505 (2023).
https://doi.org/10.31635/ccschem.023.202202582
Wang, D., Meng, X., Zhang, N., Sun, D., Hou, R., Chen, H. and Liu, X., Characteristics of structure, thermal stability and optical properties for a novel NLO crystal (C5H12NO)H2PO4, Opt. Mater. (Amst)., 135, 113225 (2023).
https://doi.org/10.1016/j.optmat.2022.113225
Wang, J. and Dong, J., Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies, Sensors, 20(14), 3981 (2020).
https://doi.org/10.3390/s20143981
Yauri, R., Gamero, V. and Alayo, M., Characterization of the electrical properties of an optical device manufactured with CMOS 0.35 μm technology, Indones. J. Electr. Eng. Comput. Sci., 32(3), 1346 (2023).
https://doi.org/10.11591/ijeecs.v32.i3.pp1346-1352
Zallo, E., Pianetti, A., Prikhodko, A. S., Cecchi, S., Zaytseva, Y. S., Giuliani, A., Kremser, M., Borgardt, N. I., Finley, J. J., Arciprete, F., Palummo, M., Pulci, O. and Calarco, R., Two-dimensional single crystal monoclinic gallium telluride on silicon substrate via transformation of epitaxial hexagonal phase, npj 2D Mater. Appl., 7(1), 19 (2023).