Synthesis, Characterization and Influence of Copper Nanoparticles on Growth of Vigna mungo L. Hepper CO-7 Variety
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 31-40
Abstract
The copper nanoparticle was synthesized by employing Cnidoscolus aconitifolius (Mill) leaf extract. The nanoparticles were characterized by UV, FTIR and SEM studies. The SEM image showed a spherical structure. The bio-stimulant effect of green synthesized copper nanoparticles on Vigna mungo L. Hepper was investigated. Seed germination, biochemical, antioxidant, and enzyme activities of the copper nanoparticles were studied. The germination and morphological characteristics were superior at 100 mg/L copper nanoparticle-treated seeds. The biochemical parameters such as chlorophyll (0.701±0.107 mg/g), carbohydrate (4.657±0.090 mg/g), protein (4.396±0.335 mg/g), amino acid (18.557±0.638 mg/g), phenol (10.824±0.53 mg/g), flavonoid (3.644±0.171 mg/g), alkaloid (6.529±0.45 mg/g), and tannin (12.159±0.218 mg/g) were higher at a nanoparticle concentration of 100 mg/L. As far as the enzymatic activities, the maximum activity of nitrate reductase (4.505±0.203 mg/g) and α-amylase (13.195±0.285 mg/g) were observed with 100 mg/L copper nanoparticle-treated seedlings. The in vitro antioxidant activities were also studied.
Full Text
Reference
Abdulla-Al-Mamun, M., Kusumoto, Y. and Muruganandham, M., Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization, Mater. Lett., 63(23), 2007-2009 (2009).
https://doi.org/10.1016/j.matlet.2009.06.037
Al-Hakkani, M. F., Biogenic copper nanoparticles and their applications: A review, SN Appl. Sci., 2(3), 505 (2020).
https://doi.org/10.1007/s42452-020-2279-1
Banerjee, S., Islam, J., Mondal, S., Saha, A., Saha, B. and Sen, A., Proactive attenuation of arsenic-stress by nano-priming: Zinc Oxide Nanoparticles in Vigna mungo (L.) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation, J. Hazard. Mater., 446, 130735 (2023).
http://dx.doi.org/10.1016/j.jhazmat.2023.130735
Beauchamp, C. and Fridovich, I., Superoxide dismutase: Improved assay and an assay applicable to polyacrylamide gels, Anal. Biochem., 44(1), 276–287 (1971).
https://doi.org/10.1016/0003-2697(71)90370-8
Blois, M. S., Antioxidants determination by the use of a stable free radical, Nature, 181 (4617), 1199–1200 (1958).
http://dx.doi.org/10.1038/1811199a0
Chandran, R., Nivedhini V. and Parimelazhagan, T., Nutritional composition and antioxidant properties of Cucumis dipsaceus ehrenb. ex spach leaf, The Scientific World Journal, 2013, 890451 (2013).
https://doi.org/10.1155/2013/890451
Cheng, H. N., Doemeny, L. J., Geraci, C. L. and Grob, S. D., Nanotechnology overview: opportunities and challenges, Nanotechnology: Delivering on the Promise, 1, 1–12 (2016).
http://dx.doi.org/10.1021/bk-2016-1220.ch001
Choudhary, R. C., Joshi, A., Kumari, S., Kumaraswamy, R. V. and Saharan, V., Preparation of Cu-chitosan nanoparticle and its effect on growth and enzyme activity during seed germination in maize, J. Pharmacogn. Phytochem., 6(4), 669-673 (2017).
http://dx.doi.org/10.13140/RG.2.2.20701.31200
Ealia, S. A. M. and Saravanakumar, M. P., A review of the classification, characterization, and synthesis of nanoparticles and their application, The IOP conference series Materials Science and Engineering, 263(3), 032019 (2017).
http://dx.doi.org/10.1088/1757-899X/263/3/032019
Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., Mahmoudi, M. and Ghafariyan, M., The effect of copper oxide nanoparticles on antioxidant system and root elongation of wheat, Environ. Sci. Pollut. Res., 26(21), 21654-21665 (2019).
Gogos, A., Knauer, K., Bucheli, T. D. and Nanos, G. D., Modeling the effects of Ag and Cu nanoparticle aggregation on nanotoxicity to seed germination, Environ. Sci. Pollut. Res., 23(4), 3190-3200 (2016).
Gomes, D. G., Pelegrino, M. T., Ferreira, A. S., Bazzo, J. H., Zucareli, C., Seabra, A. B., and Oliveira, H. C., Seed priming with copper‐loaded chitosan nanoparticles promotes early growth and enzymatic antioxidant defense of maize (Zea mays L.) seedlings, J. Chem. Technol. Biotechnol., 96(8), 2176-2184 (2021).
http://dx.doi.org/10.1002/jctb.6738
Hong, G., Diao, S., Antaris, A. L. and Dai, H., Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chem. Rev., 115(19), 10816-10906 (2015).
http://dx.doi.org/10.1021/acs.chemrev.5b00008
Hong, J., Rico, C. M., Zhao, L., Adeleye, A. S., Keller, A. A., Peralta-Videa, J. R., and Gardea-Torresdey, J. L., Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa), Environ. Sci. Processes Impacts, 17(1), 177-185 (2015).
http://dx.doi.org/10.1039/c4em00551a
Joseph, A. T., Prakash, P. and Narvi, S. S., Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity, Int. J. Sci. Eng. Technol., 4(2), 463-472 (2016).
Krishna, C. S., Sajeesh, T. and Parimelazhagan, T., Evaluation of nutraceutical properties of Laportea interrupta (L.) Chew, Food Sci. Biotechnol., 23(2), 577–585 (2014).
http://dx.doi.org/10.1007/s10068-014-0079-3
Kruk, T., Szczepanowicz, K., Stefańska, J., Socha, R. P. and Warszyński, P., Synthesis and antimicrobial activity of monodisperse copper nanoparticles, Colloids Surf., B, 128, 17-22 (2015).
https://doi.org/10.1016/j.colsurfb.2015.02.009
Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schüth, C. and Graber, E. R., Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties, Sci. Total Environ., 626, 953-961 (2018).
http://dx.doi.org/10.1016/j.scitotenv.2018.01.157
Lowe, R. H. and Evans, H. J., Preparation and some properties of a soluble nitrate reductase from Rhizobium japonicum, Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 85(3), 377-389 (1964).
https://doi.org/10.1016/0926-6569(64)90301-3
Makkar, H. P., Siddhuraju, P., Becker, K., Makkar, H. P., Siddhuraju, P. and Becker, K., Tannins, Plant secondary metabolites, 393, 67-81 (2007).
http://dx.doi.org/10.1007/978-1-59745-425-4
Mali, S. C., Dhaka, A., Githala, C. K. and Trivedi, R., Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties, Biotechnol. Rep., 27, e00518 (2020).
https://doi.org/10.1016/j.btre.2020.e00518
Mansoori, G. A. and Soelaiman, T. F., Nanotechnology: An Introduction for the Standards Community, J. ASTM Int., 2(6), 1-22 (2005)
http://dx.doi.org/10.1520/JAI13110
Prieto, P., Pineda, M. and Aguilar, M., Spectophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E, Anal. Biochem., 269(2), 337–341 (1999).
https://doi.org/10.1006/abio.1999.4019
Re, R., Pelligrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. A., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Adv. Free Radical Biol. Med., 26(9), 1231–1237 (1999).
https://doi.org/10.1016/s0891-5849(98)00315-3
Sadasivam, S. and Manikam, A., Biochemical methods, 3rd edition, New age international (P) Limited publishers, (2008).
Saravanan, M., Barabadi, H., Vahidi, H., Webster, T. J., Medina-Cruz, D., Mostafavi, E., Vernet-Crua, A., Cholula-Diaz, J. L. and Periakaruppan, P., Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, 439–456 (2021).
http://dx.doi.org/10.1016/b978-0-12-821013-0.00004-0
Satalkar, P., Elger, B. S. and Shaw, D. M., Defining nano, nanotechnology, and nanomedicine: why should it matter?, Sci. Eng. Ethics, 22, 1255–1276 (2016).
https://doi.org/10.1007/s11948-015-9705-6
Shikha, J. A. I. N., Ankita, J. A. I. N., Kachhawah, P. and Devra, V., Synthesis and size control of copper nanoparticles and their catalytic application, Transactions of Nonferrous Metals Society of China, 25(12), 3995-4000 (2015).
http://dx.doi.org/10.1016/S1003-6326(15)64048-1
Singh, K. P., Malik, A., Mohan, D. and Sinha, S., Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study, Water Res., 38(18), 3980-3992 (2004).
http://dx.doi.org/10.1016/j.watres.2004.06.011
Sripathy, K. V., Singh, C., Ramesh, K. V., Pal, G., Kumar, A., Jeevan, K. S. P., Raja K 6, Umesh, K., Sanjay, K. and Garlapati, V. K., Interference of Nanoparticulates in seed invigoration of green gram, Plant Physiol. Biochem., 195, 256-265 (2023).
https://doi.org/10.1016/j.plaphy.2023.01.018
Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núñez, G., Rivero, I. A., Gochi-Ponce, Y. and Flores-López, L. Z., A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents, J. Saudi Chem. Soc., 21(3), 341-348 (2017).
https://doi.org/10.1016/j.jscs.2016.10.005
Tito, I. A., Uddin, S., Islam, S. and Bhowmik, S., Copper Nanoparticle (CuNP’s) Synthesis: A review of the various ways with Photocatalytic and Antibacterial Activity, Orient. J. Chem., 37(5), 1030 (2021).
http://dx.doi.org/10.13005/ojc/370503
Umer, A., Naveed, S., Ramzan, N., Rafique, M. S. and Imran, M., A green method for the synthesis of copper nanoparticles using L-ascorbic acid, Matéria (Rio de janeiro), 19, 197-203 (2014).
http://dx.doi.org/10.1590/S1517-70762014000300 002
Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F. and Hong, J., Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innovation, 26, 102336 (2022).
http://dx.doi.org/10.1016/j.eti.2022.102336
Zhishen, J., Mengcheng, T. and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem., 64(4), 555-559 (1999).