Open Access

Exceptional Cyclic Stability and Performance Characteristics of a Nanostructured rGO–CNT-WO3 Supercapacitor Electrode

M. Kalaivani, PG and Research Department of Physics, Chikkaiah Naicker College, Erode, TN, India B. Gnanavel, gnanavelphd@gmail.com
PG and Research Department of Physics, Chikkaiah Naicker College, Erode, TN, India
S. Krithika Department of Physical Science, Dr. G. R. Damodaran College of Education, Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 341-350

https://doi.org/10.13074/jent.2024.12.242718

PDF


Abstract

This study investigated the WO3-rGO hybrid, a material with great potential as a supercapacitor electrode. This material was produced using a straightforward one-pot hydrothermal synthesis process. A range of analytical techniques including X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis were used to investigate the structural, morphological, compositional, and surface properties of the prepared materials. The improvement in electrochemical supercapacitive qualities was assessed by comparing pure hexagonal phased WO3 with different hybrids, which varied based on the concentration of rGO added to it. This evaluation was conducted using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The WO3@rGO(1:5) composite demonstrated a significant increase in capacitance value, reaching 948 F/g. This surpassed the individual capacitance values of rGO (71.11 F/g) and WO3 (94.22 F/g) at a current density of 4 A/g. Furthermore, the WO3@rGO(1:5) composite exhibited excellent cycling stability, maintaining 95% of its initial capacitance across 10000 cycles, indicating a promising rate capability and good cycling stability performance.

Full Text

Reference


Abdollahi, A., Abnavi, A., Ghasemi, S., Mohajerzadeh, S. and Sanaee, Z., Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor, Electrochim. Acta., 320, 134598(2019).

https://doi.org/10.1016/j.electacta.2019.134598

Bhattacharya, G., Fishlock, S. J., Pritam, A., Sinha, R. S. and McLaughlin, J. A., Recycled Red Mud–Decorated Porous 3D Graphene for High‐Energy Flexible Micro‐Supercapacitor, Adv. Sustainable Syst., 4(4), 1900133(2020).

https://doi.org/10.1002/adsu.201900133

Bissett, M. A., Kinloch, I. A. and Dryfe, R. A. W., Characterization of MoS2 –Graphene Composites for High-Performance Coin Cell Supercapacitors, Am. Chem. Soc. Appl. Mater. Interfaces, 7(31), 17388–17398(2015).

https://doi.org/10.1021/acsami.5b04672

Chen, Y., Zhang, X., Zhang, D., Yu, P. and Ma, Y., High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon, 49(2), 573–580(2011).

https://doi.org/10.1016/j.carbon.2010.09.060

Cheng, Z., Wang, Z., Shifa, T. A., Wang, F., Zhan, X., Xu, K., Liu, Q. and He, J., Au plasmonics in a WS2-Au-CuInS2 photocatalyst for significantly enhanced hydrogen generation, Appl. Phys. Lett., 107(22), 223902(2015). https://doi.org/10.1063/1.4937008

Cherusseri, J., Choudhary, N., Sambath, K. K., Jung, Y. and Thomas, J., Recent trends in transitio n metal dichalcogenide based supercapacitor electrodes, Nanoscale Horiz., 4(4), 840–858(2019).

https://doi.org/10.1039/C9NH00152B

Choudhary, N., Li, C., Chung, H. S., Moore, J., Thomas, J. and Jung, Y., High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers, Am. Chem. Soc. Nano, 10(12), 10726–10735(2016).

https://doi.org/10.1021/acsnano.6b06111

Dong, L., Xu, C., Li, Y., Huang, Z. H., Kang, F., Yang, Q. H. and Zhao, X., Flexible electrodes and supercapacitors for wearable energy storage: a review by category, J. Mater. Chem. A., 4(13), 4659–4685(2016).

https://doi.org/10.1039/C5TA10582J

Du, J., Liu, L., Hu, Z., Yu, Y., Zhang, Y., Hou, S. and Chen, A., Raw-Cotton-Derived N-Doped Carbon Fiber Aerogel as an Efficient Electrode for Electrochemical Capacitors, Am. Chem. Soc. Sustainable Chem. Eng., 6(3), 4008–4015(2018).

https://doi.org/10.1021/acssuschemeng.7b04396

Duong, B., Yu, Z., Gangopadhyay, P., Seraphin, S., Peyghambarian, N. and Thomas, J., High Throughput Printing of Nanostructured Carbon Electrodes for Supercapacitors, Adv. Mater. Inter., 1(1), 1300014(2014).

https://doi.org/10.1002/admi.201300014

Ge, Y., Jalili, R., Wang, C., Zheng, T., Chao, Y. and Wallace, G. G., A robust free-standing MoS2/poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications, Electrochim. Acta., 235, 348–355(2017).

https://doi.org/10.1016/j.electacta.2017.03.069

Han, Y., Ge, Y., Chao, Y., Wang, C. and Wallace, G. G., Recent progress in 2D materials for flexible supercapacitors, J. Energy Chem., 27(1), 57–72(2018).

https://doi.org/10.1016/j.jechem.2017.10.033

Ibrahim, I., Lim, H. N., Huang, N. M. and Pandikumar, A., Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions, Public Lib. Sci. ONE, 11(5), e0154557(2016).

https://doi.org/10.1371/journal.pone.0154557

Varma, J. S., Sambath Kumar, K., Seal, S., Rajaraman, S. and Thomas, J., Fiber‐Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications, Adv. Sci., 5(9), 1800340(2018).

https://doi.org/10.1002/advs.201800340

Javed, M. S., Dai, S., Wang, M., Guo, D., Chen, L., Wang, X., Hu, C. and Xi, Y., High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres, J. Power Sources, 28563–69(2015).

https://doi.org/10.1016/j.jpowsour.2015.03.079

Jiao, Z., Wang, J., Ke, L., Liu, X., Demir, H. V., Yang, M. F. and Sun, X. W., Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device, Electrochim. Acta., 63, 153–160(2012).

https://doi.org/10.1016/j.electacta.2011.12.069

Jun, B. M., Kim, S., Heo, J., Park, C. M., Her, N., Jang, M., Huang, Y., Han, J. and Yoon, Y., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res., 12(3), 471–487(2019).

https://doi.org/10.1007/s12274-018-2225-3

Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes – A review, J. Mater., 2(1), 37–54(2016).

https://doi.org/10.1016/j.jmat.2016.01.001

Kumar, K. S., Choudhary, N., Jung, Y. and Thomas, J., Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications, Am. Chem. Soc. Energy Lett., 3(2), 482–495(2018).

https://doi.org/10.1021/acsenergylett.7b01169

Li, D. and Kaner, R. B., Graphene-Based Materials, Sci., 320(5880), 1170–1171(2008).

https://doi.org/10.1126/science.1158180

Li, X., Zhao, T., Chen, Q., Li, P., Wang, K., Zhong, M., Wei, J., Wu, D., Wei, B. and Zhu, H., Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers, Phys. Chem. Chem. Phys., 15(41), 17752(2013).

https://doi.org/10.1039/c3cp52908h

Liu, Y., Weng, B., Razal, J. M., Xu, Q., Zhao, C., Hou, Y., Seyedin, S., Jalili, R., Wallace, G. G. and Chen, J., High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films, Sci. Rep., 5(1), 17045(2015).

https://doi.org/10.1038/srep17045

Manjakkal, L., Dervin, S. and Dahiya, R., Flexible potentiometric pH sensors for wearable systems, R. Soc. Chem. Adv, 10(15), 8594–8617(2020).

https://doi.org/10.1039/D0RA00016G

Purkait, T., Singh, G., Kumar, D., Singh, M. and Dey, R. S., High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep., 8(1), 640(2018).

https://doi.org/10.1038/s41598-017-18593-3

Qiao, X., Liao, S., You, C. and Chen, R., Phosphorus and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction, Catal., 5(2), 981–991(2015).

https://doi.org/10.3390/catal5020981

Ratha, S. and Rout, C. S., Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method, Am. Chem. Soc. Appl. Mater. Interfaces, 5(21), 11427–11433(2013).

https://doi.org/10.1021/am403663f

Sambath, K. K., Cherusseri, J. and Thomas, J., Two-Dimensional Mn3 O4 Nanowalls Grown on Carbon Fibers as Electrodes for Flexible Supercapacitors, Am. Chem. Soc. Omega, 4(2), 4472–4480(2019).

https://doi.org/10.1021/acsomega.8b03309

Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B. and Kaner, R. B., Design and Mechanisms of Asymmetric Supercapacitors, Chem. Rev., 118(18), 9233–9280(2018).

https://doi.org/10.1021/acs.chemrev.8b00252

Sharma, M. and Deb, P., WS2 nanosheets with enhanced performances for supercapacitors,. Ranchi, India, Am. Inst. Phy.. 020184 (2024).

https://doi.org/10.1063/5.0178187

Shen, J., Ji, J., Dong, P., Baines, R., Zhang, Z., Ajayan, P.M., and Ye, M., Novel FeNi2 S4 /TMD-based ternary composites for supercapacitor applications, J. Mater. Chem. A., 4(22), 8844–8850(2016).

https://doi.org/10.1039/C6TA03111K

Sun, Y., Wu, Q. and Shi, G., Supercapacitors based on self-assembled graphene organogel, Phys. Chem. Phys., 13(38), 17249(2011).

https://doi.org/10.1039/c1cp22409c

Thripuranthaka, M., Kashid, R. V., Sekhar, R. C. and Late, D. J., Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets, Appl. Phy. Lett., 104(8), 081911(2014).

https://doi.org/10.1063/1.4866782

Tu, C. C., Lin, L. Y., Xiao, B. C. and Chen, Y. S., Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets, J. Power Sources, 320, 78–85(2016).

https://doi.org/10.1016/j.jpowsour.2016.04.083

Xia, X., Zhang, Y., Chao, D., Xiong, Q., Fan, Z., Tong, X., Tu, J., Zhang, H. and Fan, H. J., Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance, Energy Environ. Sci., 8(5), 1559–1568(2015).

https://doi.org/10.1039/C5EE00339C

Contact Us

Powered by

Powered by OJS