A Complete Review on DC-to-DC Converter Topologies for Energy Sustainable Electro-mobility under Environmentally Heterogeneous Power Conditions
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 161-170
Abstract
The electric vehicle is an upcoming technology that upgrades the biosphere and diminishes pollution across the globe. Electric Vehicles powered by batteries mitigate the problem of the emission of greenhouse gases and air pollution. Research has been undertaken lately to integrate sources of renewable energy to electrify the E-Vehicle to reduce the dependency on fossil fuels, making it an eco-friendly and nil carbon emission transport system. The increased usage and the forecasted growth of E- -vehicles urge the research to be centered on power electronic converters to attain highly efficient, cost-effective, and reliable charging infrastructure for the vehicle battery. The pivot necessity is to provide electricity to the E-vehicle efficiently and continuously. Apart from battery and grid voltage levels, electric vehicles have several systems operating at a variety of power levels. This makes the role of DC/DC converters inevitable in EV operation. This paper presents various DC/DC converter topologies that are employed in EV charging and power conversion techniques. Basic topology and working are first described along with recent developments and variants of basic topologies are also presented.
Full Text
Reference
Afonso, J. L., Cardoso, L. A. L., Pedrosa, D., Sousa, T. J. C., Machado, L., Tanta, M., Monteiro, V., A Review on Power Electronics Technologies for Electric Mobility, Energies 13(23), 6343 (2020).
https://doi.org/10.3390/en13236343
Ahmed, A., Khan, M. A., Badawy, M., Sozer, Y., Husain, I., Performance analysis of bi-directional DC-DC converters for electric vehicles and charging infrastructure, IEEE Energy Conversion Congress and Exposition. IEEE, pp 1401–1408, (2013).
https://doi.org/10.1109/ECCE.2013.6646869
Alassi, A., Al-Aswad, A., Gastli, A., Brahim, L. Ben, Massoud, A., Assessment of Isolated and Non-Isolated DC-DC Converters for Medium-Voltage PV Applications, In: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE, pp 1–6 (2017).
https://doi.org/10.1109/IEEEGCC.2017.8448079
Ananthapadmanabha, B. R., Maurya, R., Arya, S. R., Improved Power Quality Switched Inductor Cuk Converter for Battery Charging Applications, IEEE Trans. Power Electron. 33(11), 9412–9423 (2018).
https://doi.org/10.1109/TPEL.2018.2797005
Athikkal, S., Kumar, G. G., Sundaramoorthy, K., Sankar, A., A Non-Isolated Bridge-Type DC–DC Converter for Hybrid Energy Source Integration, IEEE Trans. Ind. Appl. 55(4), 4033–4043 (2019).
https://doi.org/10.1109/TIA.2019.2914624
Banaei, M. R., Bonab, H. A. F., A High Efficiency Nonisolated Buck–Boost Converter Based on ZETA Converter, IEEE Trans. Ind. Electron. 67(3), 1991–1998 (2020).
https://doi.org/10.1109/TIE.2019.2902785
Bist, V., Singh, B., A Brushless DC Motor Drive With Power Factor Correction Using Isolated Zeta Converter, IEEE Trans. Ind. Informatics 10(4), 2064–2072 (2014).
https://doi.org/10.1109/TII.2014.2346689
Boonraksa, P., Booraksa, T., Marungsri, B., Comparison of the Cuk, Sepic, and Zeta Converters Circuit Efficiency for Improving the Maximum Power Point Tracking on Photovoltaic Systems, In: 2021 International Conference on Power, Energy and Innovations (ICPEI). IEEE, pp 150–154
https://doi.org/10.1109/IEEEGCC.2017.8448079
Che Haron, C. H., Deros, B. M., Ginting, A., Fauziah, M., Investigation on the influence of machining parameters when machining tool steel using EDM, J. Mater. Process. Technol. 116(1), 84–87 (2001).
https://doi.org/10.1016/S0924-0136(01)00846-9
Chen, J., Maksimovic, D., Erickson, R. W., Analysis and design of a low-stress buck-boost converter in universal-input PFC applications, IEEE Trans. Power Electron. 21(2), 320–329 (2006).
https://doi.org/10.1109/TPEL.2005.869744
Fang, X., A novel Z-source dc-dc converter, IEEE International Conference on Industrial Technology. IEEE, pp 1–4 (2008).
https://doi.org/10.1109/ICIT.2008.4608314
Farajnezhad, M., Seong Kuan, J. S. T., Kamyab, H., Impact of Economic, Social, And Environmental Factors on Electric Vehicle Adoption: A Review, Eídos 17(24), 39–62 (2024).
https://doi.org/10.29019/eidos.v17i24.1380
Jahnes, M., Zhou, L., Eull, M., Wang, W., Preindl, M., Design of a 22-kW Transformerless EV Charger With V2G Capabilities and Peak 99.5% Efficiency, IEEE Trans. Ind. Electron. 70(6), 5862–5871 (2023).
https://doi.org/10.1109/TIE.2022.3192697
Jovanović, M., de J. Mateo Sanguino, T., Damjanović, M., Đukanović, M., Thomopoulos, N., Driving Sustainability: Carbon Footprint, 3D Printing, and Legislation concerning Electric and Autonomous Vehicles, Sensors 23(22), 9104 (2023).
https://doi.org/10.3390/s23229104
Koushki, B., Jain, P., Bakhshai, A., Half-Bridge Full-Bridge AC–DC Resonant Converter for Bi-Directional EV Charger, IEEE Access 11, 78737–78753 (2023).
https://doi.org/10.1109/ACCESS.2023.3299826
Kumar, P., Channi, H. K., Babbar, A., Kumar, R., Bhutto, J. K., Khan, T. M. Y., Bhowmik, A., Razak, A., Wodajo, A. W., A systematic review of nanotechnology for electric vehicles battery, Int. J. Low-Carbon Technol. 19, 747–765 (2024).
https://doi.org/10.1093/ijlct/ctae029
Kushwaha, R., Singh, B., A Modified Luo Converter-Based Electric Vehicle Battery Charger With Power Quality Improvement, IEEE Trans. Transp. Electrif. 5(4), 1087–1096 (2019).
https://doi.org/10.1109/TTE.2019.2952089
Lee, Y.-J., Khaligh, A., Emadi, A., Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles, IEEE Trans. Veh. Technol. 58(8), 3970–3980 (2009).
https://doi.org/10.1109/TVT.2009.2028070
Lin, J.-Y., Liu, P.-J., Yang, C.-Y., A Dual-Transformer Active-Clamp Forward Converter With Nonlinear Conversion Ratio, IEEE Trans. Power Electron. 31(6), 4353–4361 (2016).
https://doi.org/10.1109/TPEL.2015.2477359
Ma, H., Tan, Y., Du, L., Han, X., Ji, J., An integrated design of power converters for electric vehicles, IEEE 26th International Symposium on Industrial Electronics (ISIE). IEEE, pp 600–605 (2017).
https://doi.org/10.1109/ISIE.2017.8001314
Mahdavi, M., Farzanehfard, H., Bridgeless SEPIC PFC Rectifier With Reduced Components and Conduction Losses, IEEE Trans. Ind. Electron. 58(9), 4153–4160 (2011).
https://doi.org/10.1109/TIE.2010.2095393
Mehta, C. P., P., B., Buck-Boost converter as power factor correction controller for plug-in electric vehicles and battery charging application, IEEE 6th International Conference on Power Systems (ICPS). IEEE, pp 1–6 (2016).
https://doi.org/10.1109/ICPES.2016.7584111
Nayak, P. S. R., Kamalapathi, K., Laxman, N., Tyagi, V. K., Design and Simulation Of BUCK-BOOST Type Dual Input DC-DC Converter for Battery Charging Application in Electric Vehicle, In: 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). IEEE, pp 1–6 (2021).
https://doi.org/10.1109/SeFet48154.2021.9375658
Shafique, M., Luo, X., Nanotechnology in transportation vehicles: An overview of its applications, environmental, health and safety concerns, Materials (Basel). 12(15), 11–17 (2019).
https://doi.org/10.3390/ma12152493
Singh, A. K., Badoni, M., Tatte, Y. N., A Multifunctional Solar PV and Grid Based On-Board Converter for Electric Vehicles, IEEE Trans. Veh. Technol. 69(4), 3717–3727 (2020a).
https://doi.org/10.1109/TVT.2020.2971971
Singh, A. K., Mishra, A. K., Gupta, K. K., Bhatnagar, P., Kim, T., An Integrated Converter With Reduced Components for Electric Vehicles Utilizing Solar and Grid Power Sources, IEEE Trans. Transp. Electrif. 6(2), 439–452 (2020b).
https://doi.org/10.1109/TTE.2020.2998799
Singh, B., Bist, V., Chandra, A., Al-Haddad, K., Power Factor Correction in Bridgeless-Luo Converter-Fed BLDC Motor Drive, IEEE Trans. Ind. Appl. 51(2), 1179–1188 (2015a).
https://doi.org/10.1109/TIA.2014.2344502
Singh, B., Kushwaha, R., A PFC Based EV Battery Charger Using a Bridgeless Isolated SEPIC Converter, IEEE Trans. Ind. Appl. 56(1), 477–487 (2020c).
https://doi.org/10.1109/TIA.2019.2951510
Singh, R. K. S. R. K., Srivastava, V. S. V., Atul, A., Imam, A. I. A., Mehta, P. K. M. P. K., An Endeavour to Decrease CO2 Outflow through Efficient use of Supplementary Cementitious Materials in Construction, J. Environ. Nanotechnol. 9(3), 30–33 (2020d).
https://doi.org/10.13074/jent.2020.09.203420
Singh, S., Singh, B., Bhuvaneswari, G., Bist, V., Power Factor Corrected Zeta Converter Based Improved Power Quality Switched Mode Power Supply, IEEE Trans. Ind. Electron. 62(9), 5422–5433 (2015b).
https://doi.org/10.1109/TIE.2015.2415752
Suarez, C., Martinez, W., Fast and Ultra-Fast Charging for Battery Electric Vehicles – A Review, In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, pp 569–575 (2019).
https://doi.org/10.1109/ECCE.2019.8912594
Tang, Y., Lu, J., Wu, B., Zou, S., Ding, W., Khaligh, A., An Integrated Dual-Output Isolated Converter for Plug-in Electric Vehicles, IEEE Trans. Veh. Technol. 67(2), 966–976 (2018).
https://doi.org/10.1109/TVT.2017.2750076
Torkan, A., Ehsani, M., A Novel Nonisolated Z -Source DC–DC Converter for Photovoltaic Applications, IEEE Trans. Ind. Appl. 54(5), 4574–4583 (2018).
https://doi.org/10.1109/TIA.2018.2833821
Wang, C., Li, M., Ouyang, Z., Wang, G., Resonant Push–Pull Converter With Flyback Regulator for MHz High Step-Up Power Conversion, IEEE Trans. Ind. Electron. 68(2), 1178–1187 (2021).
https://doi.org/10.1109/TIE.2020.2969109
Zahid, Z. U., Dalala, Z. M., Chen, R., Chen, B., Lai, J.-S., Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications, IEEE Trans. Transp. Electrif. 1(3), 232–244 (2015).
https://doi.org/10.1109/TTE.2015.2476035
Zhou, X., Sheng, B., Liu, W., Chen, Y., Wang, L., Liu, Y.-F., Sen, P. C., A High-Efficiency High-Power-Density On-Board Low-Voltage DC–DC Converter for Electric Vehicles Application, IEEE Trans. Power Electron. 36(11), 12781–12794 (2021).