A Critical Review on Polymer Composites Reinforced with Artificial Fibers using Fused Deposition Modelling
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 440-448
Abstract
The practical application of Additive Manufacturing (AM) technology expands constantly in the automotive, aerospace, and biomedical sectors, among others. Additive manufacturing technology has been categorized by ASTM into seven groups according to the type of material and process used to fabricate the parts. Intellectual property rights of manufacturer restrict the users to process few materials in a machine. Nevertheless, compared to extrusion or injection molding, the mechanical strength and robustness of three dimensional (3D) printed items are significantly lower. First, some researchers have looked into optimizing process factors such build orientation, layer height, infill density, and air gap with the purpose of enhancing the mechanical properties. Secondly, altering the material with reinforcement improves mechanical properties compared with un-reinforced material. Fusion Deposition Modelling (FDM) technology based on 3D printer retains a market share of 40% globally. This article reviews the mechanical performance of FDM feed stock filament of thermo-plastic polymers ABS/PLA/PP with a reinforcement of CF/CNF/CNT/JFRT/CPT. The researchers reported improvements in mechanical characteristics such as strength, strain failure rate, and Young's modulus.
Full Text
Reference
Cano-Vicent, A., Tambuwala, M. M., Hassan, S. S., Barh, D., Aljabali, A. A. A., Birkett, M., Arjunan, A. and Serrano-Aroca, Á., Fused deposition modelling: Current status, methodology, applications and future prospects, Addit. Manuf., 47, 102378 (2021).
https://doi.org/10.1016/j.addma.2021.102378
Carneiro, O. S., Silva, A. F. and Gomes, R., Fused deposition modeling with polypropylene, Mater. Des., 83, 768–776 (2015).
https://doi.org/10.1016/j.matdes.2015.06.053
Dinwiddie, R. B., Kunc, V., Lindal, J. M., Post, B., Smith, R. J., Love, L. and Duty, C. E., Infrared imaging of the polymer 3D-printing process, In: Colbert FP, Hsieh S-J (Tony) (eds) p 910502 (2014).
https://doi.org/10.1117/12.2053425
Gray, R. W., Baird, D. G. and Bøhn, J. H., Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling, Polym. Compos., 19(4), 383–394 (1998).
https://doi.org/10.1002/pc.10112
Ismail, K. I., Yap, T. C. and Ahmed, R., 3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques, Polymers (Basel)., 14(21), 4659 (2022).
https://doi.org/10.3390/polym14214659
Kumar, R., Kumar, M. and Chohan, J. S., The role of additive manufacturing for biomedical applications: A critical review, J. Manuf. Process., 64, 828–850 (2021).
https://doi.org/10.1016/j.jmapro.2021.02.022
Lakkala, P., Munnangi, S. R., Bandari, S. and Repka, M., Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review, Int. J. Pharm. X, 5, 100159 (2023).
https://doi.org/10.1016/j.ijpx.2023.100159
Li, J., Durandet, Y., Huang, X., Sun, G. and Ruan, D., Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities, J. Mater. Sci. Technol., 119, 219–244 (2022).
https://doi.org/10.1016/j.jmst.2021.11.063
Li, N., Li, Y. and Liu, S., Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing, J. Mater. Process. Technol., 238, 218–225 (2016).
https://doi.org/10.1016/j.jmatprotec.2016.07.025
Lozano, K. and Barrera, E. V., Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses, J. Appl. Polym. Sci., 79(1), 125–133 (2001).
https://doi.org/10.1002/1097-4628(20010103)79:1<125::AID-APP150>3.0.CO;2-D
Mahmoud Zaghloul, M. Y., Yousry Zaghloul, M. M. and Yousry Zaghloul, M. M., Developments in polyester composite materials – An in-depth review on natural fibres and nano fillers, Compos. Struct., 278, 114698 (2021).
https://doi.org/10.1016/j.compstruct.2021.114698
Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A. and Hirano, Y., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep., 6(1), 23058 (2016).
https://doi.org/10.1038/srep23058
Mori, K., Maeno, T. and Nakagawa, Y., Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer, Procedia Eng., 81, 1595–1600 (2014).
https://doi.org/10.1016/j.proeng.2014.10.196
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. and Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng., 143, 172–196 (2018).
https://doi.org/10.1016/j.compositesb.2018.02.012
Nguyen, N. A., Bowland, C. C. and Naskar, A. K., Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications, Data Br., 19, 936–950 (2018).
https://doi.org/10.1016/j.dib.2018.05.130
Ning, F., Cong, W., Qiu, J., Wei, J. and Wang, S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B Eng., 80, 369–378 (2015).
https://doi.org/10.1016/j.compositesb.2015.06.013
Park, S., Shou, W., Makatura, L., Matusik, W. and Fu, K. (Kelvin), 3D printing of polymer composites: Materials, processes, and applications, Matter, 5(1), 43–76 (2022).
https://doi.org/10.1016/j.matt.2021.10.018
Penumakala, P. K., Santo, J. and Thomas, A., A critical review on the fused deposition modeling of thermoplastic polymer composites, Compos. Part B Eng., 201, 108336 (2020).
https://doi.org/10.1016/j.compositesb.2020.108336
Rouf, S., Malik, A., Singh, N., Raina, A., Naveed, N., Siddiqui, M. I. H. and Haq, M. I. U., Additive manufacturing technologies: Industrial and medical applications, Sustain. Oper. Comput., 3, 258–274 (2022).
https://doi.org/10.1016/j.susoc.2022.05.001
Shofner, M. ., Rodrı́guez-Macı́as, F. ., Vaidyanathan, R. and Barrera, E. ., Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication, Compos. Part A Appl. Sci. Manuf., 34(12), 1207–1217 (2003).
https://doi.org/10.1016/j.compositesa.2003.07.002
Sidhu, J. S., Misra, A. and Bhardwaj, A., Fabrication of carbon nanotube components using 3D printing: Review, Mater Today Proc.
https://doi.org/10.1016/j.matpr.2023.08.040
Sun, Q., Rizvi, G. M., Bellehumeur, C. T. and Gu, P., Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J., 14(2), 72–80 (2008).
https://doi.org/10.1108/13552540810862028
Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Blue, C. A. and Ozcan, S., Highly oriented carbon fiber–polymer composites via additive manufacturing, Compos. Sci. Technol., 105, 144–150 (2014).
https://doi.org/10.1016/j.compscitech.2014.10.009
Tian, X., Liu, T., Yang, C., Wang, Q. and Li, D., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos. Part A Appl. Sci. Manuf., 88, 198–205 (2016).
https://doi.org/10.1016/j.compositesa.2016.05.032
Wang, X., Jiang, M., Zhou, Z., Gou, J. and Hui, D., 3D printing of polymer matrix composites: A review and prospective, Compos. Part B Eng., 110, 442–458 (2017).
https://doi.org/10.1016/j.compositesb.2016.11.034
Yu, T., Ren, J., Li, S., Yuan, H. and Li, Y., Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Compos. Part A Appl. Sci. Manuf., 41(4), 499–505 (2010).