Optical Study on Co-Sensitization of Betanin Dye with Cadmium Sulfide to Fabricate Dye Sensitized Solar Cell
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 152-160
Abstract
Natural dyes are low-cost, eco-friendly, readily available and have optical characteristics which render them useful in energy research. The titanium tetra isopropoxide precursor can be employed using sol-gel synthesis to get titanium dioxide nanoparticles (TiO2 NPs). The FESEM analysis confirmed the deposition of TiO2 NPs on Indium Tin Oxide (ITO) substrate, which is necessary for the photo-conversion mechanism to produce electricity. One of the natural dyes that is extracted from red beets is known as betanin dye (Bd). Due to their aligned energy levels, Bd and cadmium sulfide (CdS) are used together to provide effective optical characteristics, making them suitable as dye sensitizers. The presence of Cd-S, C-N and hydroxyl groups assigned to 500, 1633, and 3300 cm-1 respectively, was demonstrated by the FTIR analysis. The energy gap of 2.16, 2.13 and 2.2 eV for Bd, CdS and Bd-CdS composite was estimated using Tauc's plot and UV-visible spectra demonstrated maximum absorbance at 485, 510 and 528 nm, respectively. The Bd absorbs broad light in visible region due to the addition of CdS. The major charge-transport phenomenon in dye-sensitized solar cells (DSSC) involves an increase in photo-current density, due to its luminous nature. However, the recombination of charge carriers prevents the overall performance of the DSSCs. The power conversion efficiency of the DSSC constructed from Bd dye and Bd-CdS composite was 0.234% and 0.367%, respectively. This optical investigation suggests co-sensitization as a sure-fire method to improve the efficiency of DSSCs extracted from natural dyes, making them reliable for future indoor applications.
Full Text
Reference
Abdullah, H., Mahalingam, S., Xian, K. J., Manap, A., Othman, M. H. D. and Akhtaruzzaman, M., Impedance analysis of charge transfer upon nickel doping in Tio 2-based flexible dye-sensitized solar cell, Polym. Bull., 78, 5755-5768 (2021).
https://doi.org/10.1007/s00289-020-03396-w
Ahmadi, H., Nayeri, Z., Minuchehr, Z., Sabouni, F. and Mohammadi, M., Betanin purification from red beetroots and evaluation of its anti-oxidant and anti-inflammatory activity on LPS-activated microglial cells, PloS one, 15(5), e0233088 (2020).
https://doi.org/10.1371/journal.pone.0233088
Alkuam, E., Mohammed, M. and Chen, T. P., Enhanced synthesis of cadmium sulfide by electrodeposition in dye-sensitized solar cells, Solar Energy, 157, 342-348 (2017).
https://doi.org/10.1016/j.solener.2017.08.052
Arbuj, S. S., Bhalerao, S. R., Rane, S. B., Hebalkar, N. Y., Mulik, U. P. and Amalnerkar, D. P., Influence of triethanolamine on physico-chemical properties of cadmium sulfide, Nanosci. Nanotechnol. Lett., 5(12), 1245-1250 (2013).
Barichello, J., Mariani, P., Matteocci, F., Vesce, L., Reale, A., Di Carlo, A., Maurizio, L., Gaetano, D. M., Stefano, P. and Calogero, G., The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells, Nanomater., 12(2), 267(2022).
https://doi.org/10.3390/nano12020267
Chang, H., Wu, H. M., Chen, T. L., Huang, K. D., Jwo, C. S. and Lo, Y. J., Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea, J. Alloys Compd., 495(2), 606-610 (2010).
https://doi.org/10.1016/j.jallcom.2009.10.057
Da-Conceição, L. R. B., da Cunha, H. O., Leite, A. M. B., Suresh, B. R., Raja, S., Ribeiro, C. and de Barros, A. L. F., Evaluation of solar conversion efficiency in dye-sensitized solar cells using natural dyes extracted from alpinia purpurata and alstroemeria flower petals as novel photosensitizers, Colorants, 2(4), 618-631 (2023).
https://doi.org/10.3390/colorants2040032
Das, P., Nayak, P. K. and Krishnan, K. R., Ultrasound assisted extraction of food colorants: Principle, mechanism, extraction technique and applications: A review on recent progress, Food Chem. Adv., 1, 100144 (2022).
https://doi.org/10.1016/j.focha.2022.100144
Devadiga, D. and Ahipa, T. N., Betanin: A Red-Violet Pigment—Chemistry and Applications, Chemistry and Technology of Natural and Synthetic Dyes and Pigments, 5772(10), 88939 (2020).
https://doi.org/10.5772/intechopen.88939
Fernando, J. M. R. C. and Senadeera, G. K. R., Natural anthocyanins as photosensitizers for dye-sensitized solar devices, Current Sci., 663-666 (2008).
Ganta, D., Jara, J. and Villanueva, R., Dye-sensitized solar cells using aloe vera and cladode of cactus extracts as natural sensitizers, Chem. Phys. Lett., 679, 97-101 (2017).
https://doi.org/10.1016/j.cplett.2017.04.094
Hao, S., Wu, J., Huang, Y. and Lin, J., Natural dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy, 80(2), 209-214 (2006).
https://doi.org/10.1016/j.solener.2005.05.009
Haque, F. Z., Nandanwar, R. and Singh, P., Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik, 128, 191-200 (2017).
https://doi.org/10.1016/j.ijleo.2016.10.025
Hossain, M. K., Pervez, M. F., Mia, M. N. H., Mortuza, A. A., Rahaman, M. S., Karim, M. R., Jahid, M. M. I., Farid, A. and Khan, M. A., Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells, Results Phys., 7, 1516-1523 (2017).
https://doi.org/10.1016/j.rinp.2017.04.011
Kabir, F., Sakib, S. N. and Matin, N., Stability study of natural green dye based DSSC. Optik, 181, 458-464 (2019).
https://doi.org/10.1016/j.ijleo.2018.12.077
Kim, M. G., Kang, J. M., Lee, J. E., Kim, K. S., Kim, K. H., Cho, M. and Lee, S. G., Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles, ACS omega, 6(16), 10668-10678 (2021).
https://doi.org/10.1021/acsomega.1c00043
Labat, F., Le, B. T., Ciofini, I. and Adamo, C., First-principles modeling of dye-sensitized solar cells: challenges and perspectives, Acc. Chem. Res., 45(8), 1268-1277(2012).
https://doi.org/10.1021/ar200327w
Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Gary W. B. and Batista, V. S., Synergistic effect between anatase and rutile TiO 2 nanoparticles in dye-sensitized solar cells, Dalton Trans., (45), 10078-10085 (2009).
https://doi.org/10.1039/B908686B
Lim, S. P., Pandikumar, A., Huang, N. M. and Lim, H. N., Facile synthesis of Au@ TiO 2 nanocomposite and its application as a photoanode in dye-sensitized solar cells, RSC Adv., 5(55), 44398-44407 (2015).
Liu, Q., Xiao, T., Zhao, J., Sun, W. and Liu, C., Phase Change Thermal Energy Storage Enabled by an In Situ Formed Porous TiO2, Small, 19(5), 2204998 (2023).
https://doi.org/10.1002/smll.202204998
Liu, T., Yang, C. and Li, Y., Enhanced efficiency of DSSCs by co-sensitizing dyes with complementary absorption spectra, J. Photochem. Photobiol., A, 442, 114758 (2023).
https://doi.org/10.1016/j.jphotochem.2023.114758
Luo, P., Niu, H., Zheng, G., Bai, X., Zhang, M. and Wang, W., From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(4), 936-942 (2009).
https://doi.org/10.1016/j.saa.2009.08.039
Mahapatra, A., Kumar, P. and Pradhan, B., Improved performance of cadmium sulfide-sensitized solar cells by interface engineering, J. Mater. Sci.: Mater. Electron., 31(8), 6274-6278 (2020).
https://doi.org/10.1007/s10854-020-03182-4
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., Ivano, T., Ursula, R., Md, K. N. and Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature chemistry, 6(3), 242-247 (2014).
https://doi.org/10.1038/nchem.1861
Maurya, I. C., Srivastava, P. and Bahadur, L., Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer, Opt. Mater., 52, 150-156 (2016).
https://doi.org/10.1016/j.optmat.2015.12.016
Onyemowo, M., Unpaprom, Y. and Ramaraj, R., Exploring the potential of natural dyes in DSSCs: Innovations for efficient light harvesting and charge separation through Co-sensitization, Opt. Mater., 148, 114860 (2024).
https://doi.org/10.1016/j.optmat.2024.114860
O'regan, B. and Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(6346), 737-740 (1991).
https://doi.org/10.1038/353737a0
Piwowar-Sulej, K., Sołtysik, M., Jarosz, S. and Pukała, R., The Linkage between Renewable Energy and Project Management: What Do We Already Know, and What Are the Future Directions of Research?, Energies, 16(12), 4609 (2023).
https://doi.org/10.3390/en16124609
Pratiwi, D. D., Nurosyid, F., Supriyanto, A. and Suryana, R., Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin, J. Phys. Conf. Ser., 909(1), 012025 (2017).
https://doi.org/10.1088/2053-1591/ac3aa7
Rached, Z., Nouairi, M. E. A., Ghallem, B. R., Amrani, W. and Bellil, A., Study by Absorption and Emission Spectrophotometry of a Series of Red Dyes Capable of Destroying Far UV Rays, Am. J. Polym. Sci. Technol., 9(3), 26-39 (2023).
https://doi.org/10.11648/j.ajpst.20230903.11
Rahman, S., Haleem, A., Siddiq, M., Hussain, M. K., Qamar, S., Hameed, S. and Waris, M., Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects, RSC adv., 13(28), 19508-19529 (2023).
https://doi.org/10.1039/D3RA00903C
Rajaramanan, T., Heidari, G. F., Elilan, Y., Shivatharsiny, Y., Meena, S., Punniamoorthy, R. and Dhayalan, V., Natural sensitizer extracted from Mussaenda erythrophylla for dye-sensitized solar cell, Sci. Rep., 13, 13844 (2023).
https://doi.org/10.1038/s41598-023-40437-6
Ramanarayanan, R., Nijisha, P., Niveditha, C. V. and Sindhu, S., Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells, Mater. Res. Bull., 90, 156-161 (2017).
https://doi.org/10.1016/j.materresbull.2017.02.037
Ravichandran, S., Varthamanan, Y., Elangoven, T., Ragupathi, C. and Murugesan, S., Effect of polyaniline/FeS2 composite and usages of alternates counter electrode for dye-sensitized solar cells, Mater. Today Proc., 49, 2615-2619 (2022).
https://doi.org/10.1016/j.matpr.2021.07.329
Rempel, S. V., Razvodov, A. A., Nebogatikov, M. S., Shishkina, E. V., Shur, V. Y. and Rempel, A. A., Sizes and fluorescence of cadmium sulfide quantum dots, Phys. Solid State, 55, 624-628 (2012)..
Richhariya, G., Meikap, B. C. and Kumar, A., Review on fabrication methodologies and its impacts on performance of dye-sensitized solar cells, Environ. Sci. Pollut. Res., 29(11), 15233-15251 (2022).
https://doi.org/10.1007/s11356-021-18049-2
Roslan, N., Ya'acob, M. E., Radzi, M. A. M., Hashimoto, Y., Jamaludin, D. and Chen, G., Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation, Renewable Sustainable Energy Rev., 92, 171-186 (2018).
https://doi.org/10.1016/j.rser.2018.04.095
Sabarikirishwaran, P., Unpaprom, Y. and Ramaraj, R. Effects of Natural Dye Solvent Extraction on the Efficiency of Dye-Sensitive Solar Cells from the Leaf Biomass of Sandoricum koetjape and Syzygium samarangense, Waste Biomass Valor, 14, 3253–3263 (2023).
https://doi.org/10.1007/s12649-022-02030-2
Saeednia, S., Iranmanesh, P., Hatefi, A. M. and Vafaei, T., Fabrication and Luminescence Properties of Flower-Like Cadmium Sulfide Using 1-Benzylidenethiourea as Sulfur Source and Capping Agent, J. Clust. Sci., 30, 105–113 (2019).
https://doi.org/10.1007/s10876-018-1467-2
Saha, S., Das, P., Chakraborty, A. K., Sarkar, S. and Debbarma, R., Fabrication of DSSC with nanoporous TiO2 film and Kenaf Hibiscus dye as sensitizer, Int. J. Renewable Energy Res., 6(2), 620-627 (2016).
Sengupta, D., Mondal, B. and Mukherjee, K., Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes, Spectrochim. Acta, Part A, 148, 85-92 (2015).
https://doi.org/10.1016/j.saa.2015.03.120
Seoudi, R., Kamal, M., Shabaka, A. A., Abdelrazek, E. M. and Eisa, W., Synthesis, characterization and spectroscopic studies of CdS/polyaniline core/shell nanocomposite, Synth. Met., 160(5-6), 479-484 (2010).
https://doi.org/10.1016/j.synthmet.2009.11.035
Shaikh, S. A., Mendhe, A. C., Nadimetla, D. N., Biradar, M. R., Vijayanand, P., Puyad, A. L., Babasaheb R. S., Sidhanath V. B. and Bhosale, S. V., 2-(3-cyano-4, 5, 5-trimethylfuran-2 (5H)-ylidene) malononitrile functionalized diketopyrrolopyrrole: Synthesis and solar cell applications, J. Mol. Struct., 1297, 136954 (2024).
https://doi.org/10.1016/j.molstruc.2023.136954
Singh, S. S. and Shougaijam, B., Recent development and future prospects of rigid and flexible dye-sensitized solar cell: A review, Springer, 850, 85-109 (2022).
https://doi.org/10.1007/978-981-16-9124-9_5
Smrithi, S. P., Kottam, N., Narula, A., Madhu, G. M., Mohammed, R. and Agilan, R., Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation, J. Colloid Interface Sci., 627, 956-968 (2022).
https://doi.org/10.1016/j.jcis.2022.07.100
Srivastava, A., Chauhan, B. S., Yadav, S. C., Tiwari, M. K., Satrughna, J. A. K., Kanwade, A., Kiran, B. and Shirage, P. M., Performance of dye-sensitized solar cells by utilizing Codiaeum Variegatum Leaf and Delonix Regia Flower as natural sensitizers, Chem. Phys. Lett., 807, 140087 (2022).
https://doi.org/10.1016/j.cplett.2022.140087
Susha, N., Nandakumar, K. and Nair, S. S., Enhanced photoconductivity in CdS/betanin composite nanostructures, RSC Adv., 8(21), 11330-11337 (2018).
https://doi.org/10.1039/C7RA13116J
Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M. and Irwan, Y. M., Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC), Energy Procedia, 79, 896-902 (2015).
https://doi.org/10.1016/j.egypro.2015.11.584
Teja, A. S., Srivastava, A., Satrughna, J. A. K., Tiwari, M. K., Kanwade, A., Yadav, S. C. and Shirage, P. M., Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel applications, Dyes Pigm., 210, 110997 (2023).
https://doi.org/10.1016/j.dyepig.2022.110997
Yadav, S., Tiwari, K. S., Gupta, C., Tiwari, M. K., Khan, A. and Sonkar, S. P., A brief review on natural dyes, pigments: Recent advances and future perspectives, Results Chem., 5, 100733 (2023).
https://doi.org/10.1016/j.rechem.2022.100733
Yameen, M., Adeel, S., Nasreen, H., Ghaffar, A., Ahmad, T. and Inayat, A., Sustainable eco-friendly extraction of yellow natural dye from haar singhar (Nyctanthes arbor-tritis) for bio coloration of cotton fabric, Environ. Sci. Pollut. Res., 29(55), 83810-83823 (2022).
https://doi.org/10.1007/s11356-022-21450-0
Yavuz, C. and Ela, S. E., Fabrication of g-C3N4-reinforced CdS nanosphere-decorated TiO2 nanotablet composite material for photocatalytic hydrogen production and dye-sensitized solar cell application, J. Alloys Compd., 936, 168209 (2023).
https://doi.org/10.1016/j.jallcom.2022.168209
Zhang, D., Yamamoto, N., Yoshida, T. and Minoura, H., Natural dye sensitized solar cells, Transactions-Materials Research Society of Japan, 27(4), 811-814(2002).
Zhou, H., Wu, L., Gao, Y. and Ma, T., Dye-sensitized solar cells using 20 natural dyes as sensitizers, J. Photochem. Photobiol., A, 219(2-3), 188-194 (2011).
https://doi.org/10.1016/j.jphotochem.2011.02.008
Zhou, H., Wu, L., Gao, Y. and Ma, T., Dye-sensitized solar cells using 20 natural dyes as sensitizers, J. Photochem. Photobiol., A, 219(2-3), 188-194 (2011).