Open Access

Composites reinforced with Carbon Nanotubes A Review

M. Sathish kumar, Department of Mechanical Engineering, Government College of Technology Coimbatore, TN, India. K. Manonmani, Department of Mechanical Engineering, Government College of Technology Coimbatore, TN, India. B. Parasuram, Department of Mechanical Engineering, The Salem Polytechnic College, Salem, TN, India. S. Karthikeyan environkarthi@gmail.com
Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India.


J. Environ. Nanotechnol., Volume 2, No 3 (2013) pp. 67-80

https://doi.org/10.13074/jent.2013.09.132032

PDF


Abstract

This paper provides a general idea of carbon nanotube reinforced composites and its potential applications in various fields. It is evident from the history that composite materials have overcome the inability of conventional materials to cater the need of anticipated property requirements. The reinforcement of CNTs with the matrix material adds value and makes it as advanced multifunctional materials. The predominant properties and exciting functional characteristics of Nanocomposites provides a promising future in nanotechnology research. In this paper an attempt has been made to concise processing techniques, properties and testing methods of various nanocomposites like metal matrix CNT reinforced composites, Ceramic matrix CNT reinforced composites and Polymer CNT reinforced composites to the maximum possible extent. This article is intended to provide a crystal clear review of nanocomposites and a perspective including need for such materials to be produced with low cost and high quality.

Full Text

Reference


Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D., Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite, Science., 265, 1212 (1994). 

http://doi: 10.1126/ 265.5176.1212.

Badaire, S., Poulin, P., Maugey, M. and Zakri, C., In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering, Langmuir., 20, 10367-10370 (2004). ISSN 0743-7463.

Balazsi, C., Shen, Z., Konya, Z., Kasztovszky, Z., Weber, F., Vertesy, Z., Biro, L.P., Kiricsi, I., Arato, P., Processing of carbon nanotube reinforced silicon nitride39 composites by spark plasma sintering, Compos. Sci. Technol., 65(5), 727-733 (2005).

http://dx.doi.org/10.1016/j.compscitech.2004.10.006

Bian, Z., Wang, R.J., Wang, W.H., Zhang, T. and Inoue, A., Carbon-nanotube reinforced Zr-based bulk metallic composite and their properties, Adv.Func. Mater., 14(1), 55-63 (2004).

http://dx.doi.org/10.1002/adfm.200304422

Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T. and Fischer, J. E., Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80, 2767-2769 (2002). ISSN 0003-6951.

Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N. and Ajayan, P.M., Super-compressible foam-like films of carbon nanotubes, Science., 310, 1307-1310 (2005).

http://dx.doi.org/10.1126/science.1118957

Carreno-Morelli, E., Yang, J., Couteau, E., Hernadi, K., Seo, J.W., Bonjour, C., Forro, L. and Schaller, R., Carbon nanotube/Magnesium composites, Phys. Stat. Solidi., 201(8), 53-55(2004).

Chai, Y., Zhang, K., Zhang, M., Chan, P.C.H. and Yuen, M.M.F., Proc. Elec. Comp. Tech. Conf., Reno, NV, USA, IEEE, 1224-1229 (2007).

Chen, Y.L., Liu, B., Huang, Y. and Hwang, V.K.C., Fracture Toughness of Carbon nanotube-Reinforced Metal- and Ceramic-Matrix Composites, 2011, Article ID 746029, 9 pages .

http://doi:10.1155/2011/746029.

Chou, T.W., McCullough, R.L., Pipes, R.B., Composites, Scient. Am., 254, 193-203(1986).

Coleman, J.N., Khan, U., Blau, W.J., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon., 44, 1624 (2006).

http://doi:10.1155/2011/746029.

Collins, P.G., Avouris, P., Nanotubes for electronics, Scient. Am., 283(6), 62-69 (2000).

http://dx.doi.org/10.1038/scientificamerican1200-62

Curtin, W.A., Sheldon, B.W., CNT-reinforced ceramics and metals, Mater Today., 7(11), 44-49 (2004).

http://dx.doi.org/10.1016/S1369-7021(04)00508-5

Dehong Lu, Yehua Jiang, Rong Zhou., Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear., 305, 286-290 (2013).

http://dx.doi.org/10.1016/j.wear.2012.11.079

Deng, C. F., Wang, D.Z., Zhang, X.X. and Ma, Y.X., Damping characteristics of carbon nanotube reinforced aluminum composite, Mater. Lett., 61, 3229-3231 (2007).

http://dx.doi.org/10.1016/j.matlet.2006.11.073

Deng, F.M., Chen, X.H., Chen, W.X. and Li, W.Z., Electroless plating Ni-P matrix composite coating reinforced by carbon nanotubes, Trans. Nonferrous. Met. Soc. China, 14(4), 681-685(2004).

Du, F., Fischer, J.E. and Winey, K.I., Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys. Rev. B: Condens. Matter., 72, 121404/121401-121404/121404 (2005). ISSN 1098-0121.

Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F. and Thio, T., Electrical conductivity of individual carbon nanotubes, Nature, 382, 54-56 (1996). ISSN 0028-0836.

Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem B., 106(12), 3046-3048 (2002).

http://dx.doi.org/10.1021/jp015591+

Gautam Kumar Sah,Vijayakanth, S. and Ashok Kumar Gupta.,Mechanical, Electrical, Thermal and Morphological Properties of PP,PP-g-Mah and Mica Silicate Nanoclay Nanocomposite, J. Environ. Nanotechnol., 1(1), 13-19 (2012).

http://dx.doi.org/10.13074/jent.2012.10.121012

Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K., Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem Phys Lett., 370(5-6), 820-824 (2003).

http://dx.doi.org/10.1016/S0009-2614(03)00187-8

Gojny, F.H., Schulte, K., Functionalisation effect on the thermomechanical behaviour of multi-wall carbon nanotube/epoxycomposites, Compos. Sci. Technol., 64(15), 2303-2308 (2004).

http://dx.doi.org/10.1016/j.compscitech.2004.01.024

Gojnya, F.H., Wichmanna, M.H.G., Fiedlera, B., Bauhoferb, W. and Schultea, K., Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites, Composites Part A., 36(11), 1525-1535 (2005).

http://dx.doi.org/10.1016/j.compositesa.2005.02.007

Green, K.J., Dean, D., Vaidya, U.K. and Nyairo, E., Multiscale Fiber Reinforced Composites based on a Carbon/Epoxy Nanophased Polymer Matrix: Synthesis, Mechanical and Thermomechanical Behavior, Composites Part A., 40(9), 1470-1475 (2009).

http://dx.doi.org/10.1016/j.compositesa.2009.05.010

Haggenmueller, R., Fischer, J.E. and Winey, K.I., Single wall carbon nanotube/polyethylene composites: nucleating and templating polyethylene crystallites, Macromol., 39, 2964-2971(2006). ISSN 0024-9297.

Hamon, M.A., Hui, H., Bhowmik, P., Itkis, H.M.E., Haddon, R.C., Ester-functionalized soluble single-walled carbon nanotubes, Appl. Phys. A., 74(3), 333-338 (2002).

http://dx.doi.org/10.1007/s003390201281

He, C., Zhao, N., Shi, C., Du, X., Li, J., Li, H. and Cui, Q., An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix, Composites. Adv.Mater., 19, 1128-1132 (2007).

http://dx.doi.org/10.1002/adma.200601381

He, C., Zhao, N., Shi, C., Du, X., Li, J., Li, H. and Cui, Q., An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites, Adv.Mater., 19, 1128-1132 (2007).

http://dx.doi.org/10.1002/adma.200601381

Hsiao, K.T., Processing and Mechanical Properties characterization of Hybrid Thermoset Polymer composites with Micro-Fiber and Carbon Nano-Fiber Reinforcements, S.G. Advani, ed, Processing and properties of Nanocomposites, World Scientific, New Jersey, NJ, 141-189. (2007).

Hu, Y., Jang, I., Sinnott, S.B., Modification of carbon nanotube polystyrene matrix composites through polyatomic-ion beam deposition: predictions from molecular dynamics simulations, Compos. Sci. Technol., 63(11), 1663-1669 (2003).

http://dx.doi.org/10.1016/S0266-3538(03)00055-1

Hwang, G.L., Hwang, K.C., Carbon nanotube reinforced ceramics, J. Mat Chem., 11(6), 1722-1725(2001).

http://dx.doi.org/10.1039/b101294k

Iijima, S., Helical microtubules of graphitic carbon, Nature., 354-56 (1991).

http://doi: .1038/354056a0.

Kamigaito, O., What can be improved by nanometer composites, Journal of Japan Society of Powder Metallurgy, 38, 315-321(1991).

http://dx.doi.org/10.2497/jjspm.38.315

Karthikeyan, S., Mahalingam, P., Karthik, M., Large Scale Synthesis of Carbon Nanotubes, E-J. Chem., 6(1), 1-12 (2009).

Kim, K.T., Lee, K.H., Cha, S.I., Mo, C.B. and Hong, S.H., Characterization of carbon nanotubes /Cu nanotubes processed by using nano-sized Cu powder, Mater. Res. Soc. Symp. Proc., 821, 32521-232526 (2004).

http://dx.doi.org/10.1557/PROC-821-P3.25

Kwon, H., Estili, M., Takagi, K., Miyazaki, T. and Kawasaki, A., Combination of hot extrusion and spark plasma sintering or producing carbon nanotube reinforced aluminum matrix composites, Carbon., 47, 570-577 (2009).

http://dx.doi.org/10.1016/j.carbon.2008.10.041

Lamy de la Chapelle, M., Stephan, C., Nguyen, T. P., Lefrant, S., Journet, C., and Bernier, P., Raman characterization of singlewalled carbon nanotubes-PMMA composites, Synth. Met., 103, 2510-2512 (1999)., ISSN 0379-6779.

Laurent, C., Peigney, A., Dumortier, O., Rousset, A., Carbon nanotubes Fe alumina nanocomposites, Part II: Microstructure and mechanical properties of the hotpressed composites, J. Eur. Ceram. Soc., 1998, 18, (14), 2005.

http://dx.doi.org/10.1016/S0955-2219(98)00142-3

Li Zhang, Qing-Qing Ni,Akihiko Shiga, Toshiaki Natsuki, Yaqin Fu., Preparation of polybenzimidazole/functionalized carbon nanotube nanocomposite films for use as protective coatings, Special Issue: POLYCHAR 18 ,51(8), 1525-1532, ( 2011).

Lim, D.S., You, D.H., Choi, H.J., Lim, S.H., Jang, H., Effect of CNT distribution on tribological behavior of Alumina CNT Composites, J. wear., 259(1-6), 539-544 (2005). 

Liu, J., Rinzler, A.G., Dai, H.J., Hafner, J.H., Bradley, R.K., Boul, P.J., Fullerene pipes, Science., 280(5367), 1253-1256 (1998).

http://dx.doi.org/10.1126/science.280.5367.1253

Majkic, G., Raizada, T. and Chen, Y.C., Processing of light-weight shape memory alloys using spark plasma sintering, Proceedings of 47th IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2006).

Ngo, Q., Cruden, B.A., Cassell, A.M., Walker, M. D., Ye, Q., Koehne, J. E., Meyyappan, M., Li, J. and Yang, C.Y., Thermal Conductivity of Carbon Nanotube Composite Films, Mater, Res. Soc. Symp. Proc., 812, (2004).

Ni, B., Andrews, R., Jacques, D., Qian, D., Wijesundara, M.B.J., Choi, Y.S,, A combined computational and experimental study of ion-beam modification of carbon nanotube bundles, J. Phys.Chem. B., 105(51), 12719-12725 (2001).

http://dx.doi.org/10.1021/jp0123233

Noguchi, T., Magario, A., Fukazawa, S., Shimizu, S., Beppu, J. and Seki, M., Carbon nanotube/aluminum composites with uniform dispersion, Mater. Trans., 45(2), 602-604 (2004).

http://dx.doi.org/10.2320/matertrans.45.602

Pang, L.X., Sun, K.N., Ren, S., Sun, C. and Bi, J.Q., J. Compos. Mater., 41(16), 2025-2057(2007).

http://dx.doi.org/10.1177/0021998307074122

Peigney, A., Laurent, C., Dumortier, O., Rousset, A., Carbon nanotubes Fe alumina nanocomposites, Part I: Influence of the Fe content on the synthesis of powders, J. Eur. Ceram . Soc., 18(14), 1995-2004 (1998).

http://dx.doi.org/10.1016/S0955-2219(98)00141-1

Philip, D., Bradford, A., Xin Wanga, Haibo Zhao, A., Jon-Paul Maria, A., Quanxi Jia, B., Zhu, Y.T.A., A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes, Compos. sci. technol., 70, 1980-1985 (2010).

Poetschke, P., Bhattacharyya, A.R., Janke, A. and Goering, H., Melt mixing of polycarbonate/ multi-wall carbon nanotube composites, Compos. Interfaces, 389- 404 (2003). ISSN 1568-5543.

Praveen, B.M., Venkatesha, T.V., Arthoba Naik, Y. and Prashantha, K., Corrosion studies of carbon nanotubes-Zn composite coating, Surf. Coat. Technol., 201, 5836-5842 (2007).

http://dx.doi.org/10.1016/j.surfcoat.2006.10.034

Qian, D., Dickey, E.C., Andrews, R. and Rantell, T., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett., 76, 2868-2870 (2000). ISSN 0003-6951.

Qiu, J.J.C., Zhang, B., Wang and Liang, R., Carbon nanotubes integrated multifunctional and multiscale composites, Nanotechnology., 17, 275708-275711 (2007).

http://dx.doi.org/10.1088/0957-4484/18/27/275708

Schadler, L.S., Giannaris, S.C. and Ajayan, P.M. Load transfer in carbon nanotubes epoxy composites, Appl. Phys. Lett., 73, 3842-3844 (1998). ISSN 0003-6951.

Seeger, T., de la Fuente, G., Maser, W.K., Benito, A.M., Callejas, M.A., Martinez, M.T., Evolution of multi-walled carbon-nanotube/SiO2 composites via laser treatment. Nanotechnology., 14(2), 184-187 (2003).

http://dx.doi.org/10.1088/0957-4484/14/2/316

Seeger, T., Redlich, P., Grobert, N., Terrones, M., Walton, D.R.M., Kroto, H.W., Ruhle, M., SiOx-coating of carbon nanotubes at room temperature, Chem. Phys. Lett., 339(1-2), 41-46 (2001).

http://dx.doi.org/10.1016/S0009-2614(01)00256-1

Sen, R., Zhao, B., Perea, D., Itkis, M.E., Hu, H., Love, J., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electro spinning, Nano Lett., 4(3), 459-464 (2004).

http://dx.doi.org/10.1021/nl035135s

Seung, I., Cha, Kyung, T., Kim, Kyong, H., Lee, Chan, B., Mo, Soon, H., Hong., Strengthening and toughening of carbon nanotubes reinforced alumina nano composite fabricated by molecular level mixing process.

http://dx.doi.org/10.1016/j.scriptamat.2005.06.011.

Sinnott, S.B., Chemical functionalization of carbon nanotubes, J. Nanosci. Nanotechnol., 2(2) , 113-123 (2002).

http://dx.doi.org/10.1166/jnn.2002.107

Suhr, J., Victor, P., Ci, L., Sreekala, S., Zhang, X., Nalamasu, O., Ajayan, P.M., Fatigue resistance of aligned carbon nanotube arrays under cyclic compression, Nat. Nanotech., 2, 417 (2007).

http://dx.doi.org/10.1038/nnano.2007.186

Tang, Y., Cong, H., Zhong, R. and Cheng, H.M., Thermal expansion of a composite of single-walled carbon nanotube and nanocrystalline aluminium, Carbon., 42, 3260-3262 (2004).

http://dx.doi.org/10.1016/j.carbon.2004.07.024

Tapaszto a, O., Kun a, P., Weber a, F., Gergely a, G., Balazsi a, K., Pfeifer a J., Arato a, P., Kidari b., Hampshire b, A., S Balazsi a C., Silicon nitride based nanocomposites produced by two different sintering methods, Ceramics International., 37(8), 3457-3461 (2011).

http://dx.doi.org/10.1016/j.ceramint.2011.05.150

Thostenson, E.T., Ren, Z.F., Chou, T.W., Advances in the science and technology of carbon nanotubes and their composites, a review Compos. Sci. Technol., 61(13), 1899-912 (2001).

http://dx.doi.org/10.1016/S0266-3538(01)00094-X

Tu, J.P., Zhu, L.P., Chen, W.X., Zhao, X.B., Liu, F. and Zhang, X.B., Preparation of Ni-CNT Composite coatings on aluminium substrate, Trans. Nonferrous. Met. Soc. China., 14(5), 880-884 (2004).

Vaia, R.A., Wagner, H.D., Framework for nanocomposites, Mater. Today. 7(11), 33-37 (2004).

http://dx.doi.org/10.1016/S1369-7021(04)00506-1

Velasco-Santos, C., Martinez-Hernandez, A.L., Fisher, F.T., Ruoff, R. and Castano, V.M., Improvement of thermal and mechanical properties of carbon nanotubes composites through chemical functionalization, Chem. Mater., 15, 4470- 4475 (2003). ISSN 0897-4756.

Wang, L.Y., Tu, J.P., Chen, W.X., Wang, Y.C., Liu, X.K., Olk, C., cheng, D.H.and zhang, X.B., Friction and wear behaviour of electrodeless Ni-based CNT composite coating, Wear., 254, 1289-1293(2003).

http://dx.doi.org/10.1016/S0043-1648(03)00171-6

Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B. and Schulte, K., Glass-fibre-reinforced composites with enhanced mechanical and electrical properties benefits and limitations of a nanoparticle modified matrix, Eng. Fract. Mech., 73(16), 2346-2359 (2006).

http://dx.doi.org/10.1016/j.engfracmech.2006.05.015

Yang, Z., Xu, H., Li, M.K., Shi, Y.L., Huang, Y. and Li, H.L., Preparation and properties of Ni/P single walled carbon nanotube composite coatings by means of electroless plating , Thin Solid Films., 466, 86-91 (2004).

http://http://dx.doi.org/10.1016/j.tsf.2004.02.016

Yang, Z., Xu, H., Shi, Y.L., Li, M.K., Huang, Y. and Li, H.L., The fabrication and corrosion behaviour of electroless Ni-P carbon nanotube composite coatings, Mater. Res. Bull., 40, 1001-1009 (2005).

http://dx.doi.org/10.1016/j.materresbull.2005.02.015

Yang, J. and Schaller, R., Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes, Mater. Sci. Eng., A., A370, 512-515 (2004).

http://dx.doi.org/10.1016/j.msea.2003.08.124

Yuanxin Zhou, Farhana Pervin, Vijaya, K., Rangari, Shaik Jeelani., Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite, Mater. Sci. Eng., A., 426, 221-228 (2006).

http://dx.doi.org/10.1016/j.msea.2006.04.031

Zhan, G.D., Kuntz, J.D., et al., Single wall Carbon Nanotubes as attractive toughening agents in alumina based nanocomposites, Nat. Mater., 2(1), 38-42 (2003).

http://dx.doi.org/10.1038/nmat793

Zhang, X.F. Cao, A.Y., Wei, B.Q., Li, Y.H., Wei, J.Q., Xu, C.L. and Wu, D.H., Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett., 362, 285-290 (2002).

http://dx.doi.org/10.1016/S0009-2614(02)01025-4

 

Contact Us

Powered by

Powered by OJS