Open Access

Advances in Nanotechnology Applications for Food and Healthcare Engineering: Review

P. Selvakumar, chemistry.engg@gmail.com
Department of Chemistry, Nehru Institute of Technology, Coimbatore, TN, India
M. Kumaresan, Department of Chemistry, Nehru Institute of Technology, Coimbatore, TN, India P. Manikandan, Department of Chemistry, Kongu Engineering College, Erode, TN, India R. Mayildurai, Department of Chemistry, Kumaraguru College of Technology, Coimbatore, TN, India T. Maruthavanan Department of Chemistry, Sona College of Technology, Salem, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 1-10

https://doi.org/10.13074/jent.2024.12.242663

PDF


Abstract

Nanotechnology is revolutionizing various sectors, particularly food and healthcare engineering, by enhancing safety, quality, and efficiency. In the food industry, nanomaterials improve packaging by providing barrier properties, extending shelf life, and detecting spoilage through nanosensors. These innovations ensure food safety and reduce waste. In healthcare, nanotechnology enables targeted drug delivery, enhancing therapeutic efficacy while minimize.ng side effects. Nanoparticles facilitate imaging techniques, leading to early disease detection and personalized medicine. Additionally, nanostructured materials are advancing the development of biosensors for real-time health monitoring. As research progresses, integrating nanotechnology in these fields promises to address critical challenges, foster sustainable practices and improve overall quality of life. This abstract underscore the transformative potential of nanotechnology in food safety and healthcare, paving the way for future innovations that could significantly impact public health and nutrition. Nanotechnology is poised to transform significantly, offering immense industrial, healthcare, and agricultural opportunities. The application of nanomaterials and nanoparticles in the food industry is increasing as they help prevent food spoilage. Using nanomaterials as biomarkers can assure food safety and quality by detecting viruses present in food. A primary concern for food safety is the potential migration and leaching of nanoparticles from packaging into food items. Nanotechnology is making substantial progress, if not entirely transforming, in several industries and fields of modern scientific advancements. Recent advancements in chemistry and biotechnology have paved the way for modern nanomaterials, which exhibit remarkable properties due to their nanoscale structures. This essay explores the various applications of nanotechnology that have emerged in recent years. It provides an overview of nanomaterials and their relevance across multiple industries, including solar energy, environmental conservation, future transportation, robotics in food and agriculture, food technology, computing, sensors, medicine, water filtration, and healthcare. Additionally, it examines the promising future applications of nanotechnology. The vision for nanomaterials involves developing new yields at the atomic and molecular levels, offering innovative and efficient solutions for achieving sustainable energy sources and environmental preservation.

Full Text

Reference


Abreu, F. O. M. S., Oliveira, E. F., Paula, H. C. B. and De-Paula, R. C. M., Chitosan/cashew gum nanogels for essential oil encapsulation, Carbohydr. Polym., 89(4), 1277–1282 (2012).

https://doi.org/10.1016/j.carbpol.2012.04.048

Alghamdi, M. A., Fallica, A. N., Virzì, N., Kesharwani, P., Pittalà, V. and Greish, K., The Promise of Nanotechnology in Personalized Medicine, J. Pers. Med., 12(5), 673 (2022).

https://doi.org/10.3390/jpm12050673

Amini, S. M., Gilaki, M. and Karchani, M., Safety of Nanotechnology in Food Industries, Electronic Physician, 962–968 (2014).

https://doi.org/10.14661/2014.962-968

Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z. and Younis, K., Application of nanotechnology in food packaging: Pros and Cons, J. Agric. Food Res., 7, 100270 (2022).

https://doi.org/10.1016/j.jafr.2022.100270

Augustin, M. A. and Sanguansri, P., Chapter 5 Nanostructured Materials in the Food Industry, Advances in Food and Nutrition Research, Elsevier, 183–213 (2009).

https://doi.org/10.1016/S1043-4526(09)58005-9

Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena‐Bustillos, R. J. and McHugh, T. H., Nanocomposite Edible Films from Mango Puree Reinforced with Cellulose Nanofibers, J. Food Sci., 74(5), (2009).

https://doi.org/10.1111/j.1750-3841.2009.01186.x

Bigliardi, B. and Galati, F., Innovation trends in the food industry: The case of functional foods, Trends Food Sci. Technol., 31(2), 118–129 (2013).

https://doi.org/10.1016/j.tifs.2013.03.006

Caon, T., Martelli, S. M. and Fakhouri, F. M., New trends in the food industry: application of nanosensors in food packaging, Nanobiosensors, Elsevier, 773–804 (2017). https://doi.org/10.1016/B978-0-12-804301-1.00018-7

Cerrada, M. L., Serrano, C., Sánchez‐Chaves, M., Fernández‐García, M., Fernández‐Martín, F., De Andrés, A., Riobóo, R. J. J., Kubacka, A., Ferrer, M. and Fernández‐García, M., Self‐Sterilized EVOH‐TiO2 Nanocomposites: Interface Effects on Biocidal Properties, Adv. Funct. Materials, 18(13), 1949–1960 (2008).

https://doi.org/10.1002/adfm.200701068

Cha, D. S. and Chinnan, M. S., Biopolymer-Based Antimicrobial Packaging: A Review, Crit. Rev. Food Sci. Nutr., 44(4), 223–237 (2004).

https://doi.org/10.1080/10408690490464276

Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R., Applications and implications of nanotechnologies for the food sector, Food Addit. Contam., Part A, 25(3), 241–258 (2008).

https://doi.org/10.1080/02652030701744538

Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R. and Kumar, A., Nanotechnology in agro-food: From field to plate, Food Res. Int., 69381–400 (2015).

https://doi.org/10.1016/j.foodres.2015.01.005

Ditta, A., How helpful is nanotechnology in agriculture?, Adv. Nat. Sci: Nanosci. Nanotechnol., 3(3), 033002 (2012).

https://doi.org/10.1088/2043-6262/3/3/033002

Durán, N. and Marcato, P. D., Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review, Int. J. Food Sci. Tech., 48(6), 1127–1134 (2013).

https://doi.org/10.1111/ijfs.12027

El‐Temsah, Y. S. and Joner, E. J., Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil, Environ. Toxicol., 27(1), 42–49 (2012).

https://doi.org/10.1002/tox.20610

Gortzi, O., Lala, S., Chinou, I. and Tsaknis, J., Evaluation of the Antimicrobial and Antioxidant Activities of Origanum dictamnus Extracts before and after Encapsulation in Liposomes, Molecules, 12(5), 932–945 (2007).

https://doi.org/10.3390/12050932

Gu, H., Ho, P. L., Tong, E., Wang, L. and Xu, B., Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities, Nano Lett., 3(9), 1261–1263 (2003).

https://doi.org/10.1021/nl034396z

He, X., Deng, H. and Hwang, H., The current application of nanotechnology in food and agriculture, J. Food Drug Anal., 27(1), 1–21 (2019).

https://doi.org/10.1016/j.jfda.2018.12.002

Hu, K., Huang, X., Gao, Y., Huang, X., Xiao, H. and McClements, D. J., Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles, Food Chem., 182275–281 (2015).

https://doi.org/10.1016/j.foodchem.2015.03.009

Iannitelli, A., Grande, R., Stefano, A. D., Giulio, M. D., Sozio, P., Bessa, L. J., Laserra, S., Paolini, C., Protasi, F. and Cellini, L., Potential Antibacterial Activity of Carvacrol-Loaded Poly(DL-lactide-co-glycolide) (PLGA) Nanoparticles against Microbial Biofilm, IJMS., 12(8), 5039–5051 (2011).

https://doi.org/10.3390/ijms12085039

Joye, I. J., Davidov-Pardo, G. and McClements, D. J., Nanotechnology for increased micronutrient bioavailability, Trends Food Sci. Technol., 40(2), 168–182 (2014).

https://doi.org/10.1016/j.tifs.2014.08.006

Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Botanical Hydrocarbon Sources based MWCNTs Synthesized by Spray Pyrolysis Method for DSSC Applications, Silicon, 10(2), 211–217 (2018).

https://doi.org/10.1007/s12633-016-9419-7

Karavolos, M. and Holban, A., Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota, Pharmaceuticals, 9(4), 62 (2016).

https://doi.org/10.3390/ph9040062

Kerry, J. P., O’Grady, M. N. and Hogan, S. A., Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review, Meat Sci., 74(1), 113–130 (2006).

https://doi.org/10.1016/j.meatsci.2006.04.024

Khan, S. T., Al-Khedhairy, A. A. and Musarrat, J., ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review, J. Nanopart. Res., 17(6), 276 (2015). https://doi.org/10.1007/s11051-015-3074-6

Kim, B., Kim, D., Cho, D. and Cho, S., Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52(1), 277–281 (2003). https://doi.org/10.1016/S0045-6535(03)00051-1

Kumar, H., Kuča, K., Bhatia, S. K., Saini, K., Kaushal, A., Verma, R., Bhalla, T. C. and Kumar, D., Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens, Sensors, 20(7), 1966 (2020).

https://doi.org/10.3390/s20071966

Lagaron, J. M., Cabedo, L., Cava, D., Feijoo, J. L., Gavara, R. and Gimenez, E., Improving packaged food quality and safety. Part 2: Nanocomposites, Food Additives and Contaminants, 22(10), 994–998 (2005).

https://doi.org/10.1080/02652030500239656

Mihindukulasuriya, S. D. F. and Lim, L. T., Nanotechnology development in food packaging: A review, Trends Food Sci. Technol., 40(2), 149–167 (2014).

https://doi.org/10.1016/j.tifs.2014.09.009

Morris, M. A., Padmanabhan, S. C., Cruz-Romero, M. C., Cummins, E. and Kerry, J.P., Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications, Meat Sci., 132163–178 (2017).

https://doi.org/10.1016/j.meatsci.2017.04.234

Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y. and Kumar, D. S., Nanoparticulate material delivery to plants, Plant Sci., 179(3), 154–163 (2010).

https://doi.org/10.1016/j.plantsci.2010.04.012

Paramasivam, S., Palanisamy, S. K., Cinthaikinian, S., Palanisamy, V., Mariappan, R. and Selvakumar, P. K., Biosensors and its diverse applications in healthcare systems, Zeitschrift für Physikalische Chemie., (2024).

https://doi.org/10.1515/zpch-2023-0406

Paula, H., Oliveira, E., Carneiro, M. and De Paula, R., Matrix Effect on the Spray Drying Nanoencapsulation of Lippia sidoides Essential Oil in Chitosan-Native Gum Blends, Planta Med., 83(05), 392–397 (2016).

https://doi.org/10.1055/s-0042-107470

Pinto, R. J. B., Daina, S., Sadocco, P., Neto, C. P. and Trindade, T., Antibacterial Activity of Nanocomposites of Copper and Cellulose, Biomed Res. Int., 2013(1), 1–6 (2013).

https://doi.org/10.1155/2013/280512

Ramakrishnan, T., Mohan Gift, M. D., Chitradevi, S., Jegan, R., Hency Jose, P. S., Nagaraja, H. N., Sharma, R., Selvakumar, P. and Hailegiorgis, S. M., Study of Numerous Resins Used in Polymer Matrix Composite Materials, Adv. Mater. Sci. Eng., 2022, 1–8 (2022).

https://doi.org/10.1155/2022/1088926

Ray, S., Quek, S. Y., Easteal, A. and Chen, X. D., The Potential Use of Polymer-Clay Nanocomposites in Food Packaging, 2(4), (2006).

https://doi.org/10.2202/1556-3758.1149

Reza, M. M., Johnson, C., Hatziantoniou, S. and Demetzos, C., Nanoliposomes and Their Applications in Food Nanotechnology, J. Liposome Res., 18(4), 309–327 (2008).

https://doi.org/10.1080/08982100802465941

Rhim, J. W. and Ng, P.K.W., Natural Biopolymer-Based Nanocomposite Films for Packaging Applications, Crit. Rev. Food Sci. Nutr., 47(4), 411–433 (2007).

https://doi.org/10.1080/10408390600846366

Rhim, J. W., Park, H.-M. and Ha, C.-S., Bio-nanocomposites for food packaging applications, Prog. Polym. Sci., 38(10–11), 1629–1652 (2013).

https://doi.org/10.1016/j.progpolymsci.2013.05.008

Salvia, T. L., Qian, C., Martín, B. O. and McClements, D. J., Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions, Food Chem., 141(2), 1472–1480 (2013).

https://doi.org/10.1016/j.foodchem.2013.03.050

Siddiqui, I. A. and Mukhtar, H., Nanochemoprevention by Bioactive Food Components: A Perspective, Pharm. Res., 27(6), 1054–1060 (2010).

https://doi.org/10.1007/s11095-010-0087-9

Sim, S. and Wong, N., Nanotechnology and its use in imaging and drug delivery (Review), Biomed. Rep., 14(5), 42 (2021).

https://doi.org/10.3892/br.2021.1418

Singh, P. and Yadava, R. D. S., Nanosensors for health care, Nanosensors for Smart Cities, Elsevier, 433–450 (2020).

https://doi.org/10.1016/B978-0-12-819870-4.00025-6

Sorrentino, A., Gorrasi, G. and Vittoria, V., Potential perspectives of bio-nanocomposites for food packaging applications, Trends Food Sci. Technol., 18(2), 84–95 (2007).

https://doi.org/10.1016/j.tifs.2006.09.004

Valenti, D., De-Logu, A., Loy, G., Sinico, C., Bonsignore, L., Cottiglia, F., Garau, D. and Fadda, A.M., Liposome-Incorporated Santolina Insularis Essential Oil: Preparation, Characterization And In Vitro Antiviral Activity, J. Liposome Res., 11(1), 73–90 (2001).

https://doi.org/10.1081/LPR-100103171

Vargas, M., Pastor, C., Chiralt, A., McClements, D. J. and González-Martínez, C., Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits, Crit. Rev. Food Sci. Nutr., 48(6), 496–511 (2008).

https://doi.org/10.1080/10408390701537344

Vijayakumar, G., Rajkumar, M., Rajiv Chandar, N., Selvakumar, P. and Duraisamy, R., Environmentally friendly TDS removal from waste water by electrochemical ion exchange batch-type recirculation (EIR) technique, Environ. Sci.: Water Res. Technol., 10(4), 826–835 (2024).

https://doi.org/10.1039/D3EW00793F

Angulakshmi., V. S., Sathiskumar, C. and Karthikeyan, S., Synthesis of Multi-walled Carbon Nanotubes from Glycine Max Oil and Their Potential Applications, J. Environ. Nanotechnol., 2(Special Issue), 101–106 (2022).

https://doi.org/10.13074/jent.2013.02.nciset316

Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D. and Moustaid-Moussa, N., Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals, J. Nutr. Biochem., 25(4), 363–376 (2014).

https://doi.org/10.1016/j.jnutbio.2013.10.002

Weiss, J., Takhistov, P. and McClements, D.J., Functional Materials in Food Nanotechnology, J. Food Sci., 71(9), (2006).

https://doi.org/10.1111/j.1750-3841.2006.00195.x

Yu, H. and Huang, Q., Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch, Food Chem., 119(2), 669–674 (2010).

https://doi.org/10.1016/j.foodchem.2009.07.018

Contact Us

Powered by

Powered by OJS