Eco-Restorative Solutions: Unveiling Bioremediation's Impact on Water Quality Enhancement
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 144-153
Abstract
As a result of the world's growing industrialization and urbanization, developing nations have the densest populations worldwide. Due to numerous anthropogenic activities, this population growth has resulted in the generation of huge quantities of waste and reclaimed water. The main challenge is creating approaches so that they support wastewater treatment. Therefore, bioremediation is regarded as one of the most environmentally friendly, economical, safer and cleanest technologies for cleaning up sites contaminated with a variety of contaminants, including heavy metals, inorganic pollutants, organic pollutants, oil spill, dye and pesticides. The use of microorganisms found in nature, such as bacteria, fungus, and microalgae has emerged as an ecofriendly method. Using their unique molecular biodegradation pathways, novel bioremediation organisms offer innovative and useful insights. Enzymes, metabolites, and other bioactive chemicals produced by bacteria involved in water treatment can be identified primarily through the use of metagenomics techniques. This review speeds up research on the role of bioremediation in water purification while also providing a brief discussion of the environmental effects of water pollution.
Full Text
Reference
Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M., The Role of Microorganisms in Bioremediation- A Review, Open J. Environ. Biol. 2(1), 038–046 (2017).
https://doi.org/10.17352/ojeb.000007
Akerman-Sanchez, G., Rojas-Jimenez, K., Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment, Environ. Adv. 4, 100071 (2021).
https://doi.org/10.1016/j.envadv.2021.100071
Akhtar, N., Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies, J. Hazard. Mater. 108(1–2), 85–94 (2004).
https://doi.org/10.1016/j.jhazmat.2004.01.002
Alvarez, A., Saez, J. M., Davila Costa, J. S., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., Amoroso, M. J., Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals, Chemosphere 166, 41–62 (2017).
https://doi.org/10.1016/j.chemosphere.2016.09.070
Anekwe, I. M. S., Isa, Y. M., Bioremediation of acid mine drainage – Review, Alexandria Eng. J. 65, 1047–1075 (2023).
https://doi.org/10.1016/j.aej.2022.09.053
Ayele, A., Godeto, Y. G., Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups, J. Chem. 2021, 1–21 (2021).
https://doi.org/10.1155/2021/7694157
Bhatia, R. K., Ramadoss, G., Jain, A. K., Dhiman, R. K., Bhatia, S. K., Bhatt, A. K., Conversion of Waste Biomass into Gaseous Fuel: Present Status and Challenges in India, BioEnergy Res. 13(4), 1046–1068 (2020).
https://doi.org/10.1007/s12155-020-10137-4
Bolan, N., Nutrient removal from farm effluents, Bioresour. Technol. 94(3), 251–260 (2004).
https://doi.org/10.1016/j.biortech.2004.01.012
Chaisuksant, Y., Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri, Environ. Technol. 24(12), 1501–1508 (2003).
https://doi.org/10.1080/09593330309385695
Cheng, J., Bioremediation of Contaminated Water-Based on Various Technologies, OALib 01(01), 1–13 (2014).
https://doi.org/10.4236/oalib.preprints.1200056
Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., Husain, T., Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries, Sci. Total Environ. 569–570, 476–488 (2016).
https://doi.org/10.1016/j.scitotenv.2016.06.166
Comte, S., Guibaud, G., Baudu, M., Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values, J. Hazard. Mater. 151(1), 185–193 (2008).
https://doi.org/10.1016/j.jhazmat.2007.05.070
da Silva, I. G. S., de Almeida, F. C. G., da Rocha e Silva, N. M. P., Casazza, A. A., Converti, A., Sarubbo, L. A., Soil Bioremediation: Overview of Technologies and Trends, Energies 2020, Vol. 13, Page 4664 13(18), 4664 (2020).
https://doi.org/10.3390/EN13184664
de la Noue, J., de Pauw, N., The potential of microalgal biotechnology: A review of production and uses of microalgae, Biotechnol. Adv. 6(4), 725–770 (1988).
https://doi.org/10.1016/0734-9750(88)91921-0
Dhouib, A., Ellouz, M., Aloui, F., Sayadi, S., Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification, Lett. Appl. Microbiol. 42(4), 405–411 (2006).
https://doi.org/10.1111/J.1472-765X.2006.01858.X
Divya, M., Research, P. G., Srinivasan, A., Aanand, S., Ahilan, B., Bioremediation – An eco-friendly tool for effluent treatment: A Review, Int. J. Appl. Res. 1(12), 530–537 (2015).
Eerkes-Medrano, D., Leslie, H. A., Quinn, B., Microplastics in drinking water: A review and assessment, Curr. Opin. Environ. Sci. Heal. 7, 69–75 (2019).
https://doi.org/10.1016/J.COESH.2018.12.001
El-Sheekh, M. M., Farghl, A. A., Galal, H. R., Bayoumi, H. S., Bioremediation of different types of polluted water using microalgae, Rend. Lincei 2(27), 401–410 (2016).
https://doi.org/10.1007/S12210-015-0495-1
Ellouze, M., Sayadi, S., White-Rot Fungi and their Enzymes as a Biotechnological Tool for Xenobiotic Bioremediation, Manag Hazard Wastes. (2016).
Emparan, Q., Harun, R., Danquah, M. K., Role of phycoremediation for nutrient removal from wastewaters: a review, Appl. Ecol. Environ. Res. 17(1), 889–915 (2019).
https://doi.org/10.15666/aeer/1701_889915
Erdoǧmuş, S. F., Mutlu, B., Korcan, S. E., Güven, K., Konuk, M., Aromatic hydrocarbon degradation by halophilic archaea isolated from ÇamaltI Saltern, Turkey, Water. Air. Soil Pollut. 224(3), 1–9 (2013).
https://doi.org/10.1007/S11270-013-1449-9/METRICS
Fang, L., Huang, Q., Wei, X., Liang, W., Rong, X., Chen, W., Cai, P., Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites, Bioresour. Technol. 101(15), 5774–5779 (2010).
https://doi.org/10.1016/J.BIORTECH.2010.02.075
Fang, L., Wei, X., Cai, P., Huang, Q., Chen, H., Liang, W., Rong, X., Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida, Bioresour. Technol. 102(2), 1137–1141 (2011).
https://doi.org/10.1016/J.BIORTECH.2010.09.006
Frascari, D., Zanaroli, G., Danko, A. S., In situ aerobic cometabolism of chlorinated solvents: a review, J. Hazard. Mater. 283, 382–399 (2015).
https://doi.org/10.1016/J.JHAZMAT.2014.09.041
Gan, S., Lau, E. V., Ng, H. K., Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater. 172(2–3), 532–549 (2009).
https://doi.org/10.1016/J.JHAZMAT.2009.07.118
Gernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., Jørgensen, S. B., Activated sludge wastewater treatment plant modelling and simulation: state of the art, Environ. Model. Softw. 19(9), 763–783 (2004).
https://doi.org/10.1016/J.ENVSOFT.2003.03.005
Guiné, V., Spadini, L., Sarret, G., Muris, M., Delolme, C., Gaudet, J. P., Martins, J. M. F., Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study, Environ. Sci. Technol. 40(6), 1806–1813 (2006).
https://doi.org/10.1021/ES050981L
Hale, M. D., Eaton, R. A., Oscillatory growth of fungal hyphae in wood cell walls, Trans. Br. Mycol. Soc. 84(2), 277–288 (1985).
https://doi.org/10.1016/S0007-1536(85)80079-6
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., Goodman, R. M., Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chem Biol., 5(10), (1998).
https://doi.org/10.1016/S1074-5521(98)90108-9
Haritash, A. K., Kaushik, C. P., Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review, J. Hazard. Mater. 169(1–3), 1–15 (2009).
https://doi.org/10.1016/J.JHAZMAT.2009.03.137
Haroune, L., Saibi, S., Cabana, H., Bellenger, J. P., Intracellular enzymes contribution to the biocatalytic removal of pharmaceuticals by trametes hirsuta, Environ. Sci. Technol. 51(2), 897–904 (2017).
https://doi.org/10.1021/ACS.EST.6B04409/SUPPL_FILE/ES6B04409_SI_001.PDF
Holliger, C., Zehnder, A. J. B., Anaerobic biodegradation of hydrocarbons, Curr. Opin. Biotechnol. 7(3), 326–330 (1996).
https://doi.org/10.1016/S0958-1669(96)80039-5
Ihsanullah, I., Jamal, A., Ilyas, M., Zubair, M., Khan, G., Atieh, M. A., Bioremediation of dyes: Current status and prospects, J. Water Process Eng. 38, 101680 (2020).
https://doi.org/10.1016/J.JWPE.2020.101680
Jayakumar, G. C., Kumar, G., Tesema, A. F., Thi, N. B. D., Kobayashi, T., Xu, K., Bioremediation for Tanning Industry: A Future Perspective for Zero Emission, In: Management of Hazardous Wastes. InTech, (2016).
Jeswani, H., Mukherji, S., Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor, Bioresour. Technol. 111, 12–20 (2012).
https://doi.org/10.1016/J.BIORTECH.2012.01.157
Kato, K., Davis, K. L., Current use of bioremediation for TCE cleanup: Results of a survey, Remediat. J. 6(4), 1–14 (1996).
https://doi.org/10.1002/REM.3440060402
Khursheed, A., Kazmi, A. A., Retrospective of ecological approaches to excess sludge reduction, Water Res. 45(15), 4287–4310 (2011).
https://doi.org/10.1016/J.WATRES.2011.05.018
Kumar, N. S., Min, K., Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling, Chem. Eng. J. 168(2), 562–571 (2011).
https://doi.org/10.1016/J.CEJ.2011.01.023
Kumar, V., Shahi, S. K., Singh, S., Bioremediation: An Eco-sustainable Approach for Restoration of Contaminated Sites, Microb. Bioprospecting Sustain. Dev. , 115–136 (2018).
https://doi.org/10.1007/978-981-13-0053-0_6
Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., Naidu, R., In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview, Rev. Environ. Contam. Toxicol. 236, 1–115 (2016).
https://doi.org/10.1007/978-3-319-20013-2_1
Li, X., Li, H., Qu, C., A Review of the Mechanism of Microbial Degradation of Petroleum Pollution, IOP Conf. Ser. Mater. Sci. Eng. 484(1), 012060 (2019).
https://doi.org/10.1088/1757-899X/484/1/012060
Liu, C. W., Chang, W. N., Liu, H. S., Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water, Biochem. Eng. J. 45(1), 69–75 (2009).
https://doi.org/10.1016/J.BEJ.2009.02.009
Lu, T., Zhang, Q.-L., Yao, S.-J., Application of Biosorption and Biodegradation Functions of Fungi in Wastewater and Sludge Treatment, Fungal Appl. Sustain. Environ. Biotechnol. , 65–90 (2016).
https://doi.org/10.1007/978-3-319-42852-9_4
Malla, M. A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., Abd-Allah, E. F., Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches, Front. Microbiol. 9(JUN), 374795 (2018).
https://doi.org/10.3389/FMICB.2018.01132/BIBTEX
Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Zamorano, M., Brusi, D., Folch, A., Nitrate pollution of groundwater; all right…, but nothing else?, Sci. Total Environ. 539, 241–251 (2016).
https://doi.org/10.1016/J.SCITOTENV.2015.08.151
Menger-Krug, E., Niederste-Hollenberg, J., Hillenbrand, T., Hiessl, H., Integration of microalgae systems at municipal wastewater treatment plants: Implications for energy and emission balances, Environ. Sci. Technol. 46(21), 11505–11514 (2012).
https://doi.org/10.1021/ES301967Y/SUPPL_FILE/ES301967Y_SI_001.PDF
Mishra, A., Malik, A., Metal and dye removal using fungal consortium from mixed waste stream: Optimization and validation, Ecol. Eng. 69, 226–231 (2014).
https://doi.org/10.1016/j.ecoleng.2014.04.007
Mohamad, S., Fares, A., Judd, S., Bhosale, R., Kumar, A., Gosh, U., Khreisheh, M., Advanced wastewater treatment using microalgae: effect of temperature on removal of nutrients and organic carbon, IOP Conf. Ser. Earth Environ. Sci. 67(1), 012032 (2017).
https://doi.org/10.1088/1755-1315/67/1/012032
Muñoz, I., Gómez-Ramos, M. J., Agüera, A., Fernández-Alba, A. R., García-Reyes, J. F., Molina-Díaz, A., Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture, TrAC Trends Anal. Chem. 28(6), 676–694 (2009).
https://doi.org/10.1016/J.TRAC.2009.03.007
Muñoz, R., Guieysse, B., Algal–bacterial processes for the treatment of hazardous contaminants: A review, Water Res. 40(15), 2799–2815 (2006).
https://doi.org/10.1016/J.WATRES.2006.06.011
Norvill, Z. N., Shilton, A., Guieysse, B., Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps, J. Hazard. Mater. 313, 291–309 (2016).
https://doi.org/10.1016/J.JHAZMAT.2016.03.085
Ojha, N., Karn, R., Abbas, S., Bhugra, S., Bioremediation of Industrial Wastewater: A Review, IOP Conf. Ser. Earth Environ. Sci. 796(1), 012012 (2021).
https://doi.org/10.1088/1755-1315/796/1/012012
Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson, E. S., Indiamaowei, O. P., Clean-up of crude oil-contaminated soils: bioremediation option, Int. J. Environ. Sci. Technol. 17(2), 1185–1198 (2020).
https://doi.org/10.1007/S13762-019-02605-Y/METRICS
Omokhagbor Adams, G., Tawari Fufeyin, P., Eruke Okoro, S., Ehinomen, I., Bioremediation, Biostimulation and Bioaugmention: A Review, Int. J. Environ. Bioremediation Biodegrad. 3(1), 28–39 (2020).
https://doi.org/10.12691/ijebb-3-1-5
Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S., Waite, S., Friesl-Hanl, W., Marschner, B., Müller, I., Developing decision support tools for the selection of “gentle” remediation approaches, Sci. Total Environ. 407(24), 6132–6142 (2009).
https://doi.org/10.1016/J.SCITOTENV.2009.08.017
Oswald, W. J., My sixty years in applied algology, J. Appl. Phycol. 2003 152 15(2), 99–106 (2003).
https://doi.org/10.1023/A:1023871903434
Pacheco, D., Rocha, A. C., Pereira, L., Verdelhos, T., Microalgae Water Bioremediation: Trends and Hot Topics, Appl. Sci. 2020, Vol. 10, Page 1886 10(5), 1886 (2020).
https://doi.org/10.3390/APP10051886
Pointing, S. B., Feasibility of bioremediation by white-rot fungi, Appl. Microbiol. Biotechnol. 57(1–2), 20–33 (2001).
https://doi.org/10.1007/S002530100745/METRICS
Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., Krömer, J. O., Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects, Front. Microbiol. 7(JAN), 218193 (2017).
https://doi.org/10.3389/FMICB.2016.02106/BIBTEX
Raghunandan, K., Kumar, A., Kumar, S., Permaul, K., Singh, S., Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp, 3 Biotech., 8(1) (2018).
https://doi.org/10.1007/S13205-018-1096-3
Raghunandan, K., Mchunu, S., Kumar, A., Kumar, K. S., Govender, A., Permaul, K., Singh, S., Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 49(1), 85–92 (2014).
https://doi.org/10.1080/10934529.2013.824733
Rodríguez-Rodríguez, C. E., Caminal, G., Vicent, T., Díaz-Cruz, M. S., Eljarrat, E., Farré, M., de Alda, M. J. L., Petrović, M., Barceló, D., Fungal-Mediated Degradation of Emerging Pollutants in Sewage Sludge, Handb. Environ. Chem. 24, 137–164 (2013).
https://doi.org/10.1007/698_2012_159
Ryan, D., Leukes, W., Burton, S., Improving the bioremediation of phenolic wastewaters by Trametes versicolor, Bioresour. Technol. 98(3), 579–587 (2007).
https://doi.org/10.1016/J.BIORTECH.2006.02.001
Safiyanu, I., Sani, I., Rita, S. M., Review on Bioremediation of oil spills using microbial approach, Int. J. Eng. Sci. Res. 3(6), 41–55 (2015).
Sahota, N. K., Sharma, R., Bioremediation: Harnessing Natural Forces for Solid Waste Management, Handb. Solid Waste Manag. Sustain. through Circ. Econ. , 1077–1108 (2022).
https://doi.org/10.1007/978-981-16-4230-2_107
Saikia, N., Das, S. K., Patel, B. K. C., Niwas, R., Singh, A., Gopal, M., Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1, Biodegradation 16(6), 581–589 (2005).
https://doi.org/10.1007/S10532-005-0211-4
Sakhuja, D., Bhatia, R. K., Mundhe, S., Walia, A., Renewable Energy Products through Bioremediation of Wastewater, Sustainability 12(18), 7501 (2020).
https://doi.org/10.3390/su12187501
Seshadri, R., Heidelberg, J., Bacteria to the rescue, Nat. Biotechnol. 23(10), 1236–1237 (2005).
https://doi.org/10.1038/NBT1005-1236
Sharma, P., Kumar, S., Pandey, A., Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review, J. Environ. Chem. Eng. 9(4), 105684 (2021a).
https://doi.org/10.1016/J.JECE.2021.105684
Sharma, P., Singh, S. P., Role of the endogenous fungal metabolites in the plant growth improvement andstress tolerance, Fungi Bio-prospects Sustain. Agric. Environ. Nano-technology Vol. 3 Fungal Metab. Funct. Genomics Nano-technology , 381–401 (2021b).
https://doi.org/10.1016/B978-0-12-821734-4.00002-2
Sutherland, D. L., Ralph, P. J., Microalgal bioremediation of emerging contaminants - Opportunities and challenges, Water Res. 164, 114921 (2019).
https://doi.org/10.1016/J.WATRES.2019.114921
Taffi, M., Paoletti, N., Angione, C., Pucciarelli, S., Marini, M., Liò, P., Bioremediation in marine ecosystems: A computational study combining ecological modeling and flux balance analysis, Front. Genet. 5(SEP), 104164 (2014).
https://doi.org/10.3389/FGENE.2014.00319/BIBTEX
Tare, V., Gupta, S., Bose, P., Case studies on biological treatment of tannery effluents in India, J. Air Waste Manag. Assoc. 53(8), 976–982 (2003).
https://doi.org/10.1080/10473289.2003.10466250
Tegene, B. G., Tenkegna, T. A., Mode of Action, Mechanism and Role of Microbes in Bioremediation Service for Environmental Pollution Management, J. Biotechnol. Bioinforma. Res. , 1–18 (2020).
https://doi.org/10.47363/JBBR/2020(2)116
Tomasini, A., Hugo León-Santiesteban, H., The Role of the Filamentous Fungi in Bioremediation, Fungal Bioremediation , 3–21 (2019).
https://doi.org/10.1201/9781315205984-1
Tripathi, M., Narain Singh, D., Vikram, S., Shankar Singh, V., Kumar, S., E-S Ali, H., Metagenomic Approach towards Bioprospection of Novel Biomolecule(s) and Environmental Bioremediation, Annu. Res. Rev. Biol. 22(2), 1–12 (2018).
https://doi.org/10.9734/ARRB/2018/38385
Tripathi, S., Sharma, P., Singh, K., Purchase, D., Chandra, R., Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste, Environ. Technol. Innov. 22, 101434 (2021).
https://doi.org/10.1016/J.ETI.2021.101434
Tyagi, B., Kumar, N., Bioremediation: principles and applications in environmental management, Bioremediation Environ. Sustain. Toxicity, Mech. Contam. Degrad. Detoxif. Challenges , 3–28 (2021).
https://doi.org/10.1016/B978-0-12-820524-2.00001-8
Verma, S., Kuila, A., Bioremediation of heavy metals by microbial process, Environ. Technol. Innov. 14, 100369 (2019).
https://doi.org/10.1016/J.ETI.2019.100369
Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., Chang, J. S., Perspectives on the feasibility of using microalgae for industrial wastewater treatment, Bioresour. Technol. 222, 485–497 (2016).
https://doi.org/10.1016/J.BIORTECH.2016.09.106
Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., Krujatz, F., Microalgae wastewater treatment: Biological and technological approaches, Eng. Life Sci. 19(12), 860–871 (2019).
https://doi.org/10.1002/ELSC.201900071
Zhang, E., Wang, B., Wang, Q., Zhang, S., Zhao, B., Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol. 99(9), 3787–3793 (2008).