Open Access

Eco-Restorative Solutions: Unveiling Bioremediation's Impact on Water Quality Enhancement

Niki Desai, desainikky4@gmail.com
Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, GJ, India
Hetal Chenva, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, GJ, India Ganesh Parmar, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, GJ, India Varda Mehta Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, GJ, India


J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 144-153

https://doi.org/10.13074/jent.2024.06.242640

PDF


Abstract

As a result of the world's growing industrialization and urbanization, developing nations have the densest populations worldwide. Due to numerous anthropogenic activities, this population growth has resulted in the generation of huge quantities of waste and reclaimed water. The main challenge is creating approaches so that they support wastewater treatment. Therefore, bioremediation is regarded as one of the most environmentally friendly, economical, safer and cleanest technologies for cleaning up sites contaminated with a variety of contaminants, including heavy metals, inorganic pollutants, organic pollutants, oil spill, dye and pesticides. The use of microorganisms found in nature, such as bacteria, fungus, and microalgae has emerged as an ecofriendly method. Using their unique molecular biodegradation pathways, novel bioremediation organisms offer innovative and useful insights. Enzymes, metabolites, and other bioactive chemicals produced by bacteria involved in water treatment can be identified primarily through the use of metagenomics techniques. This review speeds up research on the role of bioremediation in water purification while also providing a brief discussion of the environmental effects of water pollution.

Full Text

Reference


Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M., The Role of Microorganisms in Bioremediation- A Review, Open J. Environ. Biol. 2(1), 038–046 (2017).

https://doi.org/10.17352/ojeb.000007

Akerman-Sanchez, G., Rojas-Jimenez, K., Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment, Environ. Adv. 4, 100071 (2021).

https://doi.org/10.1016/j.envadv.2021.100071

Akhtar, N., Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies, J. Hazard. Mater. 108(1–2), 85–94 (2004).

https://doi.org/10.1016/j.jhazmat.2004.01.002

Alvarez, A., Saez, J. M., Davila Costa, J. S., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., Amoroso, M. J., Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals, Chemosphere 166, 41–62 (2017).

https://doi.org/10.1016/j.chemosphere.2016.09.070

Anekwe, I. M. S., Isa, Y. M., Bioremediation of acid mine drainage – Review, Alexandria Eng. J. 65, 1047–1075 (2023).

https://doi.org/10.1016/j.aej.2022.09.053

Ayele, A., Godeto, Y. G., Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups, J. Chem. 2021, 1–21 (2021).

https://doi.org/10.1155/2021/7694157

Bhatia, R. K., Ramadoss, G., Jain, A. K., Dhiman, R. K., Bhatia, S. K., Bhatt, A. K., Conversion of Waste Biomass into Gaseous Fuel: Present Status and Challenges in India, BioEnergy Res. 13(4), 1046–1068 (2020).

https://doi.org/10.1007/s12155-020-10137-4

Bolan, N., Nutrient removal from farm effluents, Bioresour. Technol. 94(3), 251–260 (2004).

https://doi.org/10.1016/j.biortech.2004.01.012

Chaisuksant, Y., Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri, Environ. Technol. 24(12), 1501–1508 (2003).

https://doi.org/10.1080/09593330309385695

Cheng, J., Bioremediation of Contaminated Water-Based on Various Technologies, OALib 01(01), 1–13 (2014).

https://doi.org/10.4236/oalib.preprints.1200056

Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., Husain, T., Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries, Sci. Total Environ. 569–570, 476–488 (2016).

https://doi.org/10.1016/j.scitotenv.2016.06.166

Comte, S., Guibaud, G., Baudu, M., Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values, J. Hazard. Mater. 151(1), 185–193 (2008).

https://doi.org/10.1016/j.jhazmat.2007.05.070

da Silva, I. G. S., de Almeida, F. C. G., da Rocha e Silva, N. M. P., Casazza, A. A., Converti, A., Sarubbo, L. A., Soil Bioremediation: Overview of Technologies and Trends, Energies 2020, Vol. 13, Page 4664 13(18), 4664 (2020).

https://doi.org/10.3390/EN13184664

de la Noue, J., de Pauw, N., The potential of microalgal biotechnology: A review of production and uses of microalgae, Biotechnol. Adv. 6(4), 725–770 (1988).

https://doi.org/10.1016/0734-9750(88)91921-0

Dhouib, A., Ellouz, M., Aloui, F., Sayadi, S., Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification, Lett. Appl. Microbiol. 42(4), 405–411 (2006).

https://doi.org/10.1111/J.1472-765X.2006.01858.X

Divya, M., Research, P. G., Srinivasan, A., Aanand, S., Ahilan, B., Bioremediation – An eco-friendly tool for effluent treatment: A Review, Int. J. Appl. Res. 1(12), 530–537 (2015).

Eerkes-Medrano, D., Leslie, H. A., Quinn, B., Microplastics in drinking water: A review and assessment, Curr. Opin. Environ. Sci. Heal. 7, 69–75 (2019).

https://doi.org/10.1016/J.COESH.2018.12.001

El-Sheekh, M. M., Farghl, A. A., Galal, H. R., Bayoumi, H. S., Bioremediation of different types of polluted water using microalgae, Rend. Lincei 2(27), 401–410 (2016).

https://doi.org/10.1007/S12210-015-0495-1

Ellouze, M., Sayadi, S., White-Rot Fungi and their Enzymes as a Biotechnological Tool for Xenobiotic Bioremediation, Manag Hazard Wastes. (2016).

https://doi.org/10.5772/64145

Emparan, Q., Harun, R., Danquah, M. K., Role of phycoremediation for nutrient removal from wastewaters: a review, Appl. Ecol. Environ. Res. 17(1), 889–915 (2019).

https://doi.org/10.15666/aeer/1701_889915

Erdoǧmuş, S. F., Mutlu, B., Korcan, S. E., Güven, K., Konuk, M., Aromatic hydrocarbon degradation by halophilic archaea isolated from ÇamaltI Saltern, Turkey, Water. Air. Soil Pollut. 224(3), 1–9 (2013).

https://doi.org/10.1007/S11270-013-1449-9/METRICS

Fang, L., Huang, Q., Wei, X., Liang, W., Rong, X., Chen, W., Cai, P., Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites, Bioresour. Technol. 101(15), 5774–5779 (2010).

https://doi.org/10.1016/J.BIORTECH.2010.02.075

Fang, L., Wei, X., Cai, P., Huang, Q., Chen, H., Liang, W., Rong, X., Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida, Bioresour. Technol. 102(2), 1137–1141 (2011).

https://doi.org/10.1016/J.BIORTECH.2010.09.006

Frascari, D., Zanaroli, G., Danko, A. S., In situ aerobic cometabolism of chlorinated solvents: a review, J. Hazard. Mater. 283, 382–399 (2015).

https://doi.org/10.1016/J.JHAZMAT.2014.09.041

Gan, S., Lau, E. V., Ng, H. K., Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater. 172(2–3), 532–549 (2009).

https://doi.org/10.1016/J.JHAZMAT.2009.07.118

Gernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., Jørgensen, S. B., Activated sludge wastewater treatment plant modelling and simulation: state of the art, Environ. Model. Softw. 19(9), 763–783 (2004).

https://doi.org/10.1016/J.ENVSOFT.2003.03.005

Guiné, V., Spadini, L., Sarret, G., Muris, M., Delolme, C., Gaudet, J. P., Martins, J. M. F., Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study, Environ. Sci. Technol. 40(6), 1806–1813 (2006).

https://doi.org/10.1021/ES050981L

Hale, M. D., Eaton, R. A., Oscillatory growth of fungal hyphae in wood cell walls, Trans. Br. Mycol. Soc. 84(2), 277–288 (1985).

https://doi.org/10.1016/S0007-1536(85)80079-6

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., Goodman, R. M., Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chem Biol., 5(10), (1998).

https://doi.org/10.1016/S1074-5521(98)90108-9

Haritash, A. K., Kaushik, C. P., Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review, J. Hazard. Mater. 169(1–3), 1–15 (2009).

https://doi.org/10.1016/J.JHAZMAT.2009.03.137

Haroune, L., Saibi, S., Cabana, H., Bellenger, J. P., Intracellular enzymes contribution to the biocatalytic removal of pharmaceuticals by trametes hirsuta, Environ. Sci. Technol. 51(2), 897–904 (2017).

https://doi.org/10.1021/ACS.EST.6B04409/SUPPL_FILE/ES6B04409_SI_001.PDF

Holliger, C., Zehnder, A. J. B., Anaerobic biodegradation of hydrocarbons, Curr. Opin. Biotechnol. 7(3), 326–330 (1996).

https://doi.org/10.1016/S0958-1669(96)80039-5

Ihsanullah, I., Jamal, A., Ilyas, M., Zubair, M., Khan, G., Atieh, M. A., Bioremediation of dyes: Current status and prospects, J. Water Process Eng. 38, 101680 (2020).

https://doi.org/10.1016/J.JWPE.2020.101680

Jayakumar, G. C., Kumar, G., Tesema, A. F., Thi, N. B. D., Kobayashi, T., Xu, K., Bioremediation for Tanning Industry: A Future Perspective for Zero Emission, In: Management of Hazardous Wastes. InTech, (2016).

https://doi.org/10.5772/63809

Jeswani, H., Mukherji, S., Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor, Bioresour. Technol. 111, 12–20 (2012).

https://doi.org/10.1016/J.BIORTECH.2012.01.157

Kato, K., Davis, K. L., Current use of bioremediation for TCE cleanup: Results of a survey, Remediat. J. 6(4), 1–14 (1996).

https://doi.org/10.1002/REM.3440060402

Khursheed, A., Kazmi, A. A., Retrospective of ecological approaches to excess sludge reduction, Water Res. 45(15), 4287–4310 (2011).

https://doi.org/10.1016/J.WATRES.2011.05.018

Kumar, N. S., Min, K., Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling, Chem. Eng. J. 168(2), 562–571 (2011).

https://doi.org/10.1016/J.CEJ.2011.01.023

Kumar, V., Shahi, S. K., Singh, S., Bioremediation: An Eco-sustainable Approach for Restoration of Contaminated Sites, Microb. Bioprospecting Sustain. Dev. , 115–136 (2018).

https://doi.org/10.1007/978-981-13-0053-0_6

Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., Naidu, R., In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview, Rev. Environ. Contam. Toxicol. 236, 1–115 (2016).

https://doi.org/10.1007/978-3-319-20013-2_1

Li, X., Li, H., Qu, C., A Review of the Mechanism of Microbial Degradation of Petroleum Pollution, IOP Conf. Ser. Mater. Sci. Eng. 484(1), 012060 (2019).

https://doi.org/10.1088/1757-899X/484/1/012060

Liu, C. W., Chang, W. N., Liu, H. S., Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water, Biochem. Eng. J. 45(1), 69–75 (2009).

https://doi.org/10.1016/J.BEJ.2009.02.009

Lu, T., Zhang, Q.-L., Yao, S.-J., Application of Biosorption and Biodegradation Functions of Fungi in Wastewater and Sludge Treatment, Fungal Appl. Sustain. Environ. Biotechnol. , 65–90 (2016).

https://doi.org/10.1007/978-3-319-42852-9_4

Malla, M. A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., Abd-Allah, E. F., Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches, Front. Microbiol. 9(JUN), 374795 (2018).

https://doi.org/10.3389/FMICB.2018.01132/BIBTEX

Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Zamorano, M., Brusi, D., Folch, A., Nitrate pollution of groundwater; all right…, but nothing else?, Sci. Total Environ. 539, 241–251 (2016).

https://doi.org/10.1016/J.SCITOTENV.2015.08.151

Menger-Krug, E., Niederste-Hollenberg, J., Hillenbrand, T., Hiessl, H., Integration of microalgae systems at municipal wastewater treatment plants: Implications for energy and emission balances, Environ. Sci. Technol. 46(21), 11505–11514 (2012).

https://doi.org/10.1021/ES301967Y/SUPPL_FILE/ES301967Y_SI_001.PDF

Mishra, A., Malik, A., Metal and dye removal using fungal consortium from mixed waste stream: Optimization and validation, Ecol. Eng. 69, 226–231 (2014).

https://doi.org/10.1016/j.ecoleng.2014.04.007

Mohamad, S., Fares, A., Judd, S., Bhosale, R., Kumar, A., Gosh, U., Khreisheh, M., Advanced wastewater treatment using microalgae: effect of temperature on removal of nutrients and organic carbon, IOP Conf. Ser. Earth Environ. Sci. 67(1), 012032 (2017).

https://doi.org/10.1088/1755-1315/67/1/012032

Muñoz, I., Gómez-Ramos, M. J., Agüera, A., Fernández-Alba, A. R., García-Reyes, J. F., Molina-Díaz, A., Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture, TrAC Trends Anal. Chem. 28(6), 676–694 (2009).

https://doi.org/10.1016/J.TRAC.2009.03.007

Muñoz, R., Guieysse, B., Algal–bacterial processes for the treatment of hazardous contaminants: A review, Water Res. 40(15), 2799–2815 (2006).

https://doi.org/10.1016/J.WATRES.2006.06.011

Norvill, Z. N., Shilton, A., Guieysse, B., Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps, J. Hazard. Mater. 313, 291–309 (2016).

https://doi.org/10.1016/J.JHAZMAT.2016.03.085

Ojha, N., Karn, R., Abbas, S., Bhugra, S., Bioremediation of Industrial Wastewater: A Review, IOP Conf. Ser. Earth Environ. Sci. 796(1), 012012 (2021).

https://doi.org/10.1088/1755-1315/796/1/012012

Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson, E. S., Indiamaowei, O. P., Clean-up of crude oil-contaminated soils: bioremediation option, Int. J. Environ. Sci. Technol. 17(2), 1185–1198 (2020).

https://doi.org/10.1007/S13762-019-02605-Y/METRICS

Omokhagbor Adams, G., Tawari Fufeyin, P., Eruke Okoro, S., Ehinomen, I., Bioremediation, Biostimulation and Bioaugmention: A Review, Int. J. Environ. Bioremediation Biodegrad. 3(1), 28–39 (2020).

https://doi.org/10.12691/ijebb-3-1-5

Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S., Waite, S., Friesl-Hanl, W., Marschner, B., Müller, I., Developing decision support tools for the selection of “gentle” remediation approaches, Sci. Total Environ. 407(24), 6132–6142 (2009).

https://doi.org/10.1016/J.SCITOTENV.2009.08.017

Oswald, W. J., My sixty years in applied algology, J. Appl. Phycol. 2003 152 15(2), 99–106 (2003).

https://doi.org/10.1023/A:1023871903434

Pacheco, D., Rocha, A. C., Pereira, L., Verdelhos, T., Microalgae Water Bioremediation: Trends and Hot Topics, Appl. Sci. 2020, Vol. 10, Page 1886 10(5), 1886 (2020).

https://doi.org/10.3390/APP10051886

Pointing, S. B., Feasibility of bioremediation by white-rot fungi, Appl. Microbiol. Biotechnol. 57(1–2), 20–33 (2001).

https://doi.org/10.1007/S002530100745/METRICS

Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., Krömer, J. O., Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects, Front. Microbiol. 7(JAN), 218193 (2017).

https://doi.org/10.3389/FMICB.2016.02106/BIBTEX

Raghunandan, K., Kumar, A., Kumar, S., Permaul, K., Singh, S., Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp, 3 Biotech., 8(1) (2018).

https://doi.org/10.1007/S13205-018-1096-3

Raghunandan, K., Mchunu, S., Kumar, A., Kumar, K. S., Govender, A., Permaul, K., Singh, S., Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 49(1), 85–92 (2014).

https://doi.org/10.1080/10934529.2013.824733

Rodríguez-Rodríguez, C. E., Caminal, G., Vicent, T., Díaz-Cruz, M. S., Eljarrat, E., Farré, M., de Alda, M. J. L., Petrović, M., Barceló, D., Fungal-Mediated Degradation of Emerging Pollutants in Sewage Sludge, Handb. Environ. Chem. 24, 137–164 (2013).

https://doi.org/10.1007/698_2012_159

Ryan, D., Leukes, W., Burton, S., Improving the bioremediation of phenolic wastewaters by Trametes versicolor, Bioresour. Technol. 98(3), 579–587 (2007).

https://doi.org/10.1016/J.BIORTECH.2006.02.001

Safiyanu, I., Sani, I., Rita, S. M., Review on Bioremediation of oil spills using microbial approach, Int. J. Eng. Sci. Res. 3(6), 41–55 (2015).

Sahota, N. K., Sharma, R., Bioremediation: Harnessing Natural Forces for Solid Waste Management, Handb. Solid Waste Manag. Sustain. through Circ. Econ. , 1077–1108 (2022).

https://doi.org/10.1007/978-981-16-4230-2_107

Saikia, N., Das, S. K., Patel, B. K. C., Niwas, R., Singh, A., Gopal, M., Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1, Biodegradation 16(6), 581–589 (2005).

https://doi.org/10.1007/S10532-005-0211-4

Sakhuja, D., Bhatia, R. K., Mundhe, S., Walia, A., Renewable Energy Products through Bioremediation of Wastewater, Sustainability 12(18), 7501 (2020).

https://doi.org/10.3390/su12187501

Seshadri, R., Heidelberg, J., Bacteria to the rescue, Nat. Biotechnol. 23(10), 1236–1237 (2005).

https://doi.org/10.1038/NBT1005-1236

Sharma, P., Kumar, S., Pandey, A., Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review, J. Environ. Chem. Eng. 9(4), 105684 (2021a).

https://doi.org/10.1016/J.JECE.2021.105684

Sharma, P., Singh, S. P., Role of the endogenous fungal metabolites in the plant growth improvement andstress tolerance, Fungi Bio-prospects Sustain. Agric. Environ. Nano-technology Vol. 3 Fungal Metab. Funct. Genomics Nano-technology , 381–401 (2021b).

https://doi.org/10.1016/B978-0-12-821734-4.00002-2

Sutherland, D. L., Ralph, P. J., Microalgal bioremediation of emerging contaminants - Opportunities and challenges, Water Res. 164, 114921 (2019).

https://doi.org/10.1016/J.WATRES.2019.114921

Taffi, M., Paoletti, N., Angione, C., Pucciarelli, S., Marini, M., Liò, P., Bioremediation in marine ecosystems: A computational study combining ecological modeling and flux balance analysis, Front. Genet. 5(SEP), 104164 (2014).

https://doi.org/10.3389/FGENE.2014.00319/BIBTEX

Tare, V., Gupta, S., Bose, P., Case studies on biological treatment of tannery effluents in India, J. Air Waste Manag. Assoc. 53(8), 976–982 (2003).

https://doi.org/10.1080/10473289.2003.10466250

Tegene, B. G., Tenkegna, T. A., Mode of Action, Mechanism and Role of Microbes in Bioremediation Service for Environmental Pollution Management, J. Biotechnol. Bioinforma. Res. , 1–18 (2020).

https://doi.org/10.47363/JBBR/2020(2)116

Tomasini, A., Hugo León-Santiesteban, H., The Role of the Filamentous Fungi in Bioremediation, Fungal Bioremediation , 3–21 (2019).

https://doi.org/10.1201/9781315205984-1

Tripathi, M., Narain Singh, D., Vikram, S., Shankar Singh, V., Kumar, S., E-S Ali, H., Metagenomic Approach towards Bioprospection of Novel Biomolecule(s) and Environmental Bioremediation, Annu. Res. Rev. Biol. 22(2), 1–12 (2018).

https://doi.org/10.9734/ARRB/2018/38385

Tripathi, S., Sharma, P., Singh, K., Purchase, D., Chandra, R., Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste, Environ. Technol. Innov. 22, 101434 (2021).

https://doi.org/10.1016/J.ETI.2021.101434

Tyagi, B., Kumar, N., Bioremediation: principles and applications in environmental management, Bioremediation Environ. Sustain. Toxicity, Mech. Contam. Degrad. Detoxif. Challenges , 3–28 (2021).

https://doi.org/10.1016/B978-0-12-820524-2.00001-8

Verma, S., Kuila, A., Bioremediation of heavy metals by microbial process, Environ. Technol. Innov. 14, 100369 (2019).

https://doi.org/10.1016/J.ETI.2019.100369

Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., Chang, J. S., Perspectives on the feasibility of using microalgae for industrial wastewater treatment, Bioresour. Technol. 222, 485–497 (2016).

https://doi.org/10.1016/J.BIORTECH.2016.09.106

Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., Krujatz, F., Microalgae wastewater treatment: Biological and technological approaches, Eng. Life Sci. 19(12), 860–871 (2019).

https://doi.org/10.1002/ELSC.201900071

Zhang, E., Wang, B., Wang, Q., Zhang, S., Zhao, B., Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol. 99(9), 3787–3793 (2008).

https://doi.org/10.1016/J.BIORTECH.2007.07.011

Contact Us

Powered by

Powered by OJS