Evaluation of Activated Biochar from Sustainable Sterculia foetida Shells for the Removal of AB 158 Dye
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 248-255
Abstract
The escalating concern over environmental pollution, particularly stemming from industrial effluents like textile dyes, has necessitated the development of sustainable wastewater treatment methods. This study focuses on utilizing agricultural waste, specifically sterculia foetida shells, to synthesize activated carbon for the removal of Acid Blue 158 (AB 158) dye from aqueous solutions. Through a comprehensive investigation, activated carbon samples were produced using various chemical activating agents and characterized using techniques such as BET surface area analysis, Fourier-transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). Results indicate that the SFS-AC-K-13 adsorbent exhibited superior adsorption performance, with a maximum dye uptake of 388 mg/g and a removal efficiency of 97.89%, respectively. Equilibrium sorption data were analyzed using Langmuir and Freundlich isotherm models, with the Freundlich model demonstrating the best fit (R2=0.9896) to the experimental data. Comparison with literature values confirms the effectiveness of the synthesized adsorbent in AB 158 dye removal. Overall, this research contributes to sustainable wastewater treatment strategies and highlights the potential of agricultural waste-derived activated carbon for textile dye removal applications.
Full Text
Reference
Babatunde, K. A., Negash, B. M., Jufar, S. R., Ahmed, T. Y., Mojid, M. R., Adsorption of gases on heterogeneous shale surfaces: A review, J. Pet. Sci. Eng. 208, 109466 (2022).
https://doi.org/10.1016/j.petrol.2021.109466
Boulika, H., El Hajam, M., Hajji Nabih, M., Idrissi Kandri, N., Zerouale, A., Activated carbon from almond shells using an eco-compatible method: screening, optimization, characterization, and adsorption performance testing, RSC Adv. 12(53), 34393–34403 (2022).
https://doi.org/10.1039/D2RA06220H
Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., Almeida, V. C., NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J. 174(1), 117–125 (2011).
https://doi.org/10.1016/j.cej.2011.08.058
Chakma, S., Moholkar, V. S., Synthesis of bi-metallic oxides nanotubes for fast removal of dye using adsorption and sonocatalysis process, J. Ind. Eng. Chem. 37, 84–89 (2016).
https://doi.org/10.1016/j.jiec.2016.03.009
Chakma, S., Moholkar, V. S., Mechanistic features of ultrasonic desorption of aromatic pollutants, Chem. Eng. J. 175, 356–367 (2011).
https://doi.org/10.1016/j.cej.2011.09.123
Derle, S. N., Parikh, P. A., Parikh, J. K., Jain, S. N., Caustic soda treated dried foliage of Arachis hypogaea as a promising biosorbent for Chromacyl Blue GG dye removal, Biomass Convers Biorefinery (2023).
https://doi.org/10.1007/s13399-023-04898-z
Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., Rogalski, M., Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng. 53, 112–121 (2015).
https://doi.org/10.1016/j.jtice.2015.02.025
Foo, K. Y., Hameed, B. H., An overview of dye removal via activated carbon adsorption process, Desalin. Water Treat. 19(1–3), 255–274 (2010).
https://doi.org/10.5004/dwt.2010.1214
Foo, K. Y., Lee, L. K., Hameed, B. H., Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate, Bioresour. Technol. 134, 166–172 (2013).
https://doi.org/10.1016/j.biortech.2013.01.139
Gnanasundaram, N., Loganathan, M., Singh, A., Optimization and Performance parameters for adsorption of Cr 6+ by microwave assisted carbon from Sterculia foetida shells, IOP Conf. Ser. Mater. Sci. Eng. 206, 012065 (2017).
https://doi.org/10.1088/1757-899X/206/1/012065
Gómez, V., Larrechi, M. S., Callao, M. P., Kinetic and adsorption study of acid dye removal using activated carbon, Chemosphere 69(7), 1151–1158 (2007).
https://doi.org/10.1016/j.chemosphere.2007.03.076
Hameed, B. H., Tan, I. A. W., Ahmad, A. L., Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology, J. Hazard. Mater. 158(2–3), 324–332 (2008).
https://doi.org/10.1016/j.jhazmat.2008.01.088
Herrera-González, A. M., Caldera-Villalobos, M., Peláez-Cid, A.-A., Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite, J. Environ. Manage. 234, 237–244 (2019).
https://doi.org/10.1016/j.jenvman.2019.01.012
Hu, Z., Srinivasan, M. ., Preparation of high-surface-area activated carbons from coconut shell, Microporous Mesoporous Mater. 27(1), 11–18 (1999).
https://doi.org/10.1016/S1387-1811(98)00183-8
Kumar, P., Agnihotri, R., Wasewar, K. L., Uslu, H., Yoo, C., Status of adsorptive removal of dye from textile industry effluent, Desalin. Water Treat. 50(1–3), 226–244 (2012).
https://doi.org/10.1080/19443994.2012.719472
Kuoppamäki, K., Hagner, M., Valtanen, M., Setälä, H., Using biochar to purify runoff in road verges of urbanised watersheds: A large-scale field lysimeter study, Watershed Ecol. Environ. 1, 15–25 (2019).
https://doi.org/10.1016/j.wsee.2019.05.001
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C., Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innov. 3(2), 275–290 (2019).
https://doi.org/10.1016/j.biori.2019.09.001
Liu, R., Xiao, H., Pang, S. D., Geng, J., Yang, H., Application of Sterculia foetida petiole wastes in lightweight pervious concrete, J. Clean. Prod. 246, 118972 (2020).
https://doi.org/10.1016/j.jclepro.2019.118972
Manikandan, G., Meyyappan, N., Pitchai, R., Removal Of Basic Green 4 Dye Using Raw and Surface Modified Streculia Foetida Seeds, Res Sq. (2021).
https://doi.org/https://doi.org/10.21203/rs.3.rs-179380/v1
Mohammed, E. K., Noureddine, El Messaoudi Abdellah, D., Safae, B., Abdellah, L., Zahra Goodarzvand, C., Iqbal, M., Organic Dyes Adsorption on the Almond Shell (Prunus dulcis) as Agricultural Solid Waste from Aqueous Solution in Single and Binary Mixture Systems, Biointerface Res. Appl. Chem. 12(2), 2022–2040 (2021).
https://doi.org/10.33263/BRIAC122.20222040
Namasivayam, C., Jeyakumar, R., Yamuna, R. T., Dye removal from wastewater by adsorption on ‘waste’ Fe(III)/Cr(III) hydroxide, Waste Manag. 14(7), 643–648 (1994).
https://doi.org/10.1016/0956-053X(94)90036-1
Olivares-Marín, M., Fernández-González, C., Macías-García, A., Gómez-Serrano, V., Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci. 252(17), 5967–5971 (2006).
https://doi.org/10.1016/j.apsusc.2005.11.008
Rahman, M. A., Amin, S. M. R., Alam, A. M. S., Removal of Methylene Blue from Waste Water Using Activated Carbon Prepared from Rice Husk, Dhaka Univ. J. Sci. 60(2), 185–189 (2012).
https://doi.org/10.3329/dujs.v60i2.11491
Rajesh, Y., Boricha, H., Suryavanshi, A., Gajare, A., Jain, S., Suresh, K., Synthesis, characterization and adsorption studies on activated carbon adsorbent synthesized from Kigelia africana for removal of acid blue 113 dye from synthetic solution, Mater Today Proc. (2023).
https://doi.org/10.1016/j.matpr.2023.11.046
Ramirez, A. P., Giraldo, S., Ulloa, M., Flórez, E., Acelas, N. Y., Production and characterization of activated carbon from wood wastes, J. Phys. Conf. Ser. 935, 012012 (2017).
https://doi.org/10.1088/1742-6596/935/1/012012
Shaikhiev, I. G., Kraysman, N. V., Sverguzova, S. V., Review of Almond (Prunus Dulcis) Shell Use to Remove Pollutants from Aquatic Environments, Biointerface Res. Appl. Chem. 11(6), 14866–14880 (2021).
https://doi.org/10.33263/BRIAC116.1486614880
Sivaranjanee, R., Kumar, P. S., Mahalaxmi, S., A review on agro-based materials on the separation of environmental pollutants from water system, Chem. Eng. Res. Des. 181, 423–457 (2022).
https://doi.org/10.1016/j.cherd.2022.04.002
Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., Govarthanan, M., Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects, J Appl Microbiol., 134(2), (2023).
https://doi.org/10.1093/jambio/lxac064
Thitame, P. V., Shukla, S. R., Porosity Development of Activated Carbons Prepared from Wild Almond Shells and Coir Pith Using Phosphoric Acid, Chem. Eng. Commun. , 00986445.2015.1104503 (2015).
https://doi.org/10.1080/00986445.2015.1104503
Tsai, W. T., Chang, C. Y., Lee, S. L., Preparation and characterization of activated carbons from corn cob, Carbon N. Y. 35(8), 1198–1200 (1997).
https://doi.org/10.1016/S0008-6223(97)84654-4
Williams, N. E., Oba, O. A., Aydinlik, N. P., Modification, Production, and Methods of KOH‐Activated Carbon, ChemBioEng Rev. 9(2), 164–189 (2022).
https://doi.org/10.1002/cben.202100030
Yakout, S. M., Sharaf El-Deen, G., Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arab. J. Chem. 9, S1155–S1162 (2016).
https://doi.org/10.1016/j.arabjc.2011.12.002
Zhao, H., Zhong, H., Jiang, Y., Li, H., Tang, P., Li, D., Feng, Y., Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior, Materials (Basel). 15(3), 895 (2022).