Fly Ash Cenosphere - Formation, Separation, and Applications in Diverse Fields
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 456-469
Abstract
Despite a global shift towards renewable energy sources, coal will remain a significant energy source in the near future. The by-products of burning coal, have already given rise to environmental issues and its associated pollution. The coal fly ash, bottom ash, and its disposal require large areas of land causing certain alarming issues related to thermal power plants. Separation techniques are available to isolate the valuable constituents from fly ash viz., magnetites, aluminosilicates, cenospheres, unburned carbon, etc. for its specialized applications. The fly ash cenosphere, a high-demand material, can be explored for many industrial applications due to its outstanding characteristics, including low bulk density, good heat resistance, chemical inertness, great workability, high strength, and spherical shape. An attempt has been made in this work to present a comprehensive description of fly ash cenosphere, its formation and separation, basic properties, and environmental issues; in addition, its applications in soil amelioration, ceramics, catalysis, oil well drilling, electronic components, and zeolite synthesis have been elaborated.
Full Text
Reference
Ahmaruzzaman, M., A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36(3), 327–363 (2010).
https://doi.org/10.1016/j.pecs.2009.11.003
Aixiang, Z., Weihao, X., Jian, X., Electroless Ni–Co–P coating of cenospheres using [Ag(NH3)2]+ activator, Mater. Lett., 59(4), 524–528 (2005a).
https://doi.org/10.1016/j.matlet.2004.10.041
Aixiang, Z., Weihao, X., Jian, X., Electroless Ni-P coating of cenospheres using silver nitrate activator, Surf. Coatings Technol., 197(2–3), 142–147 (2005b).
https://doi.org/10.1016/j.surfcoat.2005.01.009
Anshits, N. N., Mikhailova, O. A., Salanov, A. N., Anshits, A. G., Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia), Fuel, 89(8), 1849–1862 (2010).
https://doi.org/10.1016/j.fuel.2010.03.049
Anshits, N. N., Vereshchagina, T. A., Bayukov, O. A., Salanov, A. N., Anshits, A. G., The Nature of Nanoparticles of Crystalline Phases in Cenospheres and Morphology of Their Shells, Glas. Phys. Chem., 31(3), 306–315 (2005).
https://doi.org/10.1007/s10720-005-0060-6
Bhangare, R. C., Tiwari, M., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., Distribution of natural radioactivity in coal and combustion residues of thermal power plants, J. Radioanal. Nucl. Chem., 300(1), 17–22 (2014).
https://doi.org/10.1007/s10967-014-2942-3
Blissett, R. S., Rowson, N. A., A review of the multi-component utilisation of coal fly ash, Fuel 97, 1–23 (2012).
https://doi.org/10.1016/j.fuel.2012.03.024
Cao, X. G., Ren, H., Zhang, H. Y., Preparation and microwave shielding property of silver-coated carbonyl iron powder, J. Alloys Compd., 631, 133–137 (2015).
https://doi.org/10.1016/j.jallcom.2015.01.103
Chalivendra, V. B., Shukla, A., Bose, A., Parameswaran, V., rocessing and mechanical characterization of lightweight polyurethane composites, J. Mater. Sci., 38, 1631-1643 (2003).
https://doi.org/10.1023/A:1023203121299
Chávez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., Alvarez-Quintana, J., Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres, Acta Mater., 59(6), 2556–2562 (2011).
https://doi.org/10.1016/j.actamat.2011.01.011
Cho, H., Oh, D., Kim, K., A study on removal characteristics of heavy metals from aqueous solution by fly ash, J. Hazard. Mater., 127(1–3), 187–195 (2005).
https://doi.org/10.1016/j.jhazmat.2005.07.019
Fomenko, E. V., Anshits, N. N., Pankova, M. V., Mikhaylova, O. A., Solovyov, L. A., Shishkina, N. N., Anshits, A. G., Influence of the composition and structure of the glass-crystalline shell of cenospheres on helium permeability, Glas. Phys. Chem., 38(2), 218–227 (2012).
https://doi.org/10.1134/S1087659612020046
Fomenko, E. V., Anshits, N. N., Solovyov, L. A., Mikhaylova, O. A., Anshits, A. G., Composition and Morphology of Fly Ash Cenospheres Produced from the Combustion of Kuznetsk Coal, Energy & Fuels, 27(9), 5440–5448 (2013).
https://doi.org/10.1021/ef400754c
Fomenko, E. V., Anshits, N. N., Vasilieva, N. G., Mikhaylova, O. A., Rogovenko, E. S., Zhizhaev, A. M., Anshits, A. G., Characterization of Fly Ash Cenospheres Produced from the Combustion of Ekibastuz Coal, Energy & Fuels, 29(8), 5390–5403 (2015).
https://doi.org/10.1021/acs.energyfuels.5b01022
Fu, W., Liu, S., Fan, W., Yang, H., Pang, X., Xu, J., Zou, G., Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property, J. Magn. Magn. Mater., 316(1), 54–58 (2007).
https://doi.org/10.1016/j.jmmm.2007.03.201
Ghosal, S., Self, S. A., Particle size-density relation and cenosphere content of coal fly ash, Fuel 74(4), 522–529 (1995).
https://doi.org/10.1016/0016-2361(95)98354-H
Goodarzi, F., Characteristics and composition of fly ash from Canadian coal-fired power plants, Fuel, 85(10–11), 1418–1427 (2006).
https://doi.org/10.1016/j.fuel.2005.11.022
Hirajima, T., Petrus, H. T. B. M., Oosako, Y., Nonaka, M., Sasaki, K., Ando, T., Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application, Int. J. Miner. Process, 95(1–4), 18–24 (2010).
https://doi.org/10.1016/j.minpro.2010.03.004
Huo, P., Yan, Y., Li, S., Li, H., Huang, W., Preparation and characterization of Cobalt Sulfophthalocyanine/TiO2/fly-ash cenospheres photocatalyst and study on degradation activity under visible light, Appl. Surf. Sci., 255(15), 6914–6917 (2009).
https://doi.org/10.1016/j.apsusc.2009.03.014
Huo, P., Yan, Y., Li, S., Li, H., Huang, W., Chen, S., Zhang, X., H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue, Desalination, 263(1–3), 258–263 (2010).
https://doi.org/10.1016/j.desal.2010.06.067
Jha, N., Badkul, A., Mondal, D. P., Das, S., Singh, M., Sliding wear behaviour of aluminum syntactic foam: A comparison with Al–10wt% SiC composites, Tribol. Int., 44(3), 220–231 (2011).
https://doi.org/10.1016/j.triboint.2010.10.004
Kim, S.-D., Choe, W., Choi, J., Jeong, J.-R., Preparation and characterization of silver coated magnetic microspheres prepared by a modified electroless plating process, Powder Technol., 342, 301–307 (2019).
https://doi.org/10.1016/j.powtec.2018.09.094
Kolay, P. K., Bhusal, S., Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization, Fuel, 117, 118–124 (2014).
https://doi.org/10.1016/j.fuel.2013.09.014
Li, D., Zhou, J., Shen, X., Liu, W., Fabrication of magnetic nanosized γ-FeNi-coated ceramic core–shell microspheres by heterogeneous precipitation and thermal reduction, Particuology, 8(3), 257–261 (2010).
https://doi.org/10.1016/j.partic.2009.05.008
Li, Y., Wu, H., Ash Cenosphere from Solid Fuels Combustion. Part 1: An Investigation into Its Formation Mechanism Using Pyrite as a Model Fuel, Energy & Fuels, 26(1), 130–137 (2012).
https://doi.org/10.1021/ef201173g
Lu, Z., Zhou, W., Huo, P., Luo, Y., He, M., Pan, J., Li, C., Yan, Y., Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste, Chem. Eng. J., 225, 34–42 (2013).
https://doi.org/10.1016/j.cej.2013.03.077
Mathapati, M., Doddamani, M., Ramesh, M. R., High-Temperature Erosive Behavior of Plasma Sprayed Cr3C2-NiCr/Cenosphere Coating, J. Mater. Eng. Perform., 27(4), 1592–1600 (2018).
https://doi.org/10.1007/s11665-018-3226-9
Meng, X., Li, D., Shen, X., Liu, W., Preparation and magnetic properties of nano-Ni coated cenosphere composites, Appl. Surf. Sci., 256(12), 3753–3756 (2010).
https://doi.org/10.1016/j.apsusc.2010.01.019
Meng, X., Shen, X., Preparation of FeCo-, FeNi- and NiCo-alloy coated cenosphere composites by heterogeneous precipitation, Particuology, 10(3), 334–338 (2012).
https://doi.org/10.1016/j.partic.2011.02.012
Mushtaq, F., Zahid, M., Bhatti, I. A., Nasir, S., Hussain, T., Possible applications of coal fly ash in wastewater treatment, J. Environ. Manage., 240, 27–46 (2019).
https://doi.org/10.1016/j.jenvman.2019.03.054
Ngu, L., Wu, H., Zhang, D., Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations, Energy & Fuels, 21(6), 3437–3445 (2007).
https://doi.org/10.1021/ef700340k
Nyale, S. M., Eze, C. P., Akinyeye, R. O., Gitari, W. M., Akinyemi, S. A., Fatoba, O. O., Petrik, L. F., The leaching behaviour and geochemical fractionation of trace elements in hydraulically disposed weathered coal fly ash, J. Environ. Sci. Heal. Part A, 49(2), 233–242 (2014).
https://doi.org/10.1080/10934529.2013.838929
Pang, J., Li, Q., Wang, B., Tao, D., Xu, X., Wang, W., Zhai, J., Preparation and characterization of electroless Ni-Fe-P alloy films on fly ash cenospheres, Powder Technol., 226, 246–252 (2012).
https://doi.org/10.1016/j.powtec.2012.04.055
Ranjbar, N., Kuenzel, C., Cenospheres: A review, Fue,l 207, 1–12 (2017).
https://doi.org/10.1016/j.fuel.2017.06.059
Shapiro, M., Galperin, V., Air classification of solid particles: a review, Chem. Eng. Process. Process Intensif., 44(2), 279–285 (2005).
https://doi.org/10.1016/j.cep.2004.02.022
Shishkin, A., Drozdova, M., Kozlov, V., Hussainova, I., Lehmhus, D., Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams, Metals (Basel)., 7(1), 16 (2017).
https://doi.org/10.3390/met7010016
Shishkin, A., Hussainova, I., Kozlov, V., Lisnanskis, M., Leroy, P., Lehmhus, D., Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams, JOM, 70(7), 1319–1325 (2018).
https://doi.org/10.1007/s11837-018-2886-0
Shukla, S., Seal, S., Akesson, J., Oder, R., Carter, R., Rahman, Z., Study of mechanism of electroless copper coating of fly-ash cenosphere particles, Appl. Surf. Sci., 181(1–2), 35–50 (2001).
https://doi.org/10.1016/S0169-4332(01)00341-5
Shukla, S., Seal, S., Rahaman, Z., Scammon, K., Electroless copper coating of cenospheres using silver nitrate activator, Mater. Lett., 57(1), 151–156 (2002).
https://doi.org/10.1016/S0167-577X(02)00722-X
Sokol, E. ., Maksimova, N. ., Volkova, N. ., Nigmatulina, E. ., Frenkel, A. ., Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (South Urals, Russia), Fuel Process. Technol., 67(1), 35–52 (2000).
https://doi.org/10.1016/S0378-3820(00)00084-9
Song, J., Wang, X., Bu, Y., Wang, X., Zhang, J., Huang, J., Ma, R., Zhao, J., Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO 2 on fly ash cenospheres, Appl. Surf. Sci., 391, 236–250 (2017).
https://doi.org/10.1016/j.apsusc.2016.04.021
Surolia, P. K., Tayade, R. J., Jasra, R. V., TiO 2 -Coated Cenospheres as Catalysts for Photocatalytic Degradation of Methylene Blue, p -Nitroaniline, n -Decane, and n -Tridecane under Solar Irradiation, Ind. Eng. Chem. Res., 49(19), 8908–8919 (2010).
https://doi.org/10.1021/ie100388m
Tiwari, M., Shukla, S. P., Mohan, D., Bhargava, D. S., Kisku, G. C., Modified Cenospheres as an Adsorbent for the Removal of Disperse Dyes, Adv. Environ. Chem., 2015, 1–8 (2015).
https://doi.org/10.1155/2015/349254
Vassilev, S. V., Vassileva, C. G., Mineralogy of combustion wastes from coal-fired power stations, Fuel Process. Technol., 47(3), 261–280 (1996).
https://doi.org/10.1016/0378-3820(96)01016-8
Vassilev, S. V, Menendez, R., Diaz-Somoano, M., Martinez-Tarazona, M. R., Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates, Fuel, 83(4–5), 585–603 (2004).
https://doi.org/10.1016/j.fuel.2003.10.003
Wadatkar, S. S., Shende, D. Z., Wasewar, K. L., Synthesis of copper-coated ceramic core–shell cenosphere in fluidized bed reactor using H2/N2 gas for thermal reduction, Mater. Today Proc., 29, 850–856 (2020).
https://doi.org/10.1016/j.matpr.2020.05.022
Wang, S., Application of Solid Ash Based Catalysts in Heterogeneous Catalysis, Environ. Sci. Technol., 42(19), 7055–7063 (2008).
https://doi.org/10.1021/es801312m
Wang, W., Zhai, J., Li, Q., Synthesis of buoyant metal-coated fly ash cenosphere and its excellent catalytic performance in dye degradation, J. Colloid Interface Sci., 444, 10–16 (2015).
https://doi.org/10.1016/j.jcis.2014.12.059
Xu, X., Li, Q., Cui, H., Pang, J., Sun, L., An, H., Zhai, J., Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres, Desalination, 272(1–3), 233–239 (2011).
https://doi.org/10.1016/j.desal.2011.01.028
Xu, Z., Yu, X. Z., Shen, Z. G., Coating Nano-Nickel Film on Cenospheres by Magnetic Sputtering Method, Adv. Mater. Res., 750–752, 2044–2047 (2013).
https://doi.org/10.4028/www.scientific.net/AMR.750-752.2044
Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q., A comprehensive review on the applications of coal fly ash, Earth-Science Rev., 141, 105–121 (2015).
https://doi.org/10.1016/j.earscirev.2014.11.016
Yu, X., Shen, Z., The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method, J. Magn. Magn. Mater., 321(18), 2890–2895 (2009).
https://doi.org/10.1016/j.jmmm.2009.04.040
Zeng, A. X., Hu, K. L., Luo, L., Electroless Ni-P Coating of Cenospheres Using Copper Sulfate Activator, Adv. Mater. Res., 463–464, 375–379 (2012).