Theoretical Analysis of NiO Interaction with Conjugated Carbazole-thiophene: Structural and Electronic Insights
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 322-330
Abstract
This study presents a detailed analysis of the interactions between nickel oxide and a pristine conjugated thiophene-carbazole copolymer matrix, utilizing Density Functional Theory (DFT) software based on quantum ATK. Upon interaction with NiO, a significant enhancement in the stability and conductivity of the carbazole-thiophene copolymer was observed. This enhancement was evidenced by a notable reduction in total energy and a decrease in the band gap from 2.88 to 0.56 eV, as observed in the molecular energy spectra (MES). The integration of nickel 3d sub-orbitals into the electronic configuration of the pristine matrix was attributed to this enhancement. Additionally, Density of States (DOS) profiles and reactivity parameters confirmed a narrowed HOMO-LUMO gap (ƸH-ƸL) with improved electronic properties and stability.
Full Text
Reference
Agrawal, S., Srivastava, A., Kaushal, G. and Srivastava, A., Edge Engineered Graphene Nanoribbons as Nanoscale Interconnect: DFT Analysis, IEEE Trans. Nanotechnol., 21, 43–51 (2022).
https://doi.org/10.1109/TNANO.2021.3140041
Ahmad Bhat, S., Zafar, F., Ullah Mirza, A., Hossain Mondal, A., Kareem, A., Mohd. Rizwanul Haq, Q. and Nishat, N., NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity, Arab. J. Chem., 13(6), 5724–5739 (2020).
https://doi.org/10.1016/J.ARABJC.2020.04.011
Chauhan, A. K., Jha, P., Aswal, D. K. and Yakhmi, J. V., Organic Devices: Fabrication, Applications, and Challenges. Organic Devices: Fabrication, Applications, and Challenges, Springer US, (2022).
https://doi.org/10.1007/s11664-021-09338-0
del, V. M. A., Gacitúa, M. A., Hernández, F., Luengo, M., Hernández, L. A., Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices, Polymers (Basel). 15(6), 1450 (2023).
https://doi.org/10.3390/polym15061450
El Nady, J., Shokry, A., Khalil, M., Ebrahim, S., Elshaer, A. M. and Anas, M., One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode, Sci. Rep., 12(1), 1–10 (2022).
https://doi.org/10.1038/s41598-022-07483-y
Husain, A., Mohammad, F., Ahmad, S., Preparation and Applications of Polythiophene Nanocomposites Antibacterial activity of Nano particles View project Membrane Electrodes Materials View project Preparation and Applications of Polythiophene Nanocomposites, Preparation and Applications of Polythiophene Nanocomposites Antibacterial activity of Nano particles View project Membrane Electrodes Materials View project Preparation and Applications of Polythiophene Nanocomposites, 2020.
Islam, N., Ghosh, D. C., The Electronegativity and the Global Hardness Are Periodic Properties of Atoms, J. Quantum Inf. Sci., 01(03), 135–141 (2011).
https://doi.org/10.4236/jqis.2011.13019
Jamil, S., Ahmad, Z., Ali, M., Rauf Khan, S., Ali, S., Amen Hammami, M., Haroon, M., Saleh, T. A. and Ramzan, S. A. J. M., Synthesis and characterization of polyaniline/nickel oxide composites for fuel additive and dyes reduction, Chem. Phys. Lett., 776, 138713 (2021).
https://doi.org/10.1016/J.CPLETT.2021.138713
Khare, K. P., Kathal, R., Shukla, N., Srivastava, R. and Srivastava, A., Suitability of ZnO Nanocomposite of Copolymer (PPy-PNVK-ZnO) (PPy = Polypyrrole; PNVK = Poly 9-vinyl carbazole) for the Detection of 6-Thioguanine: A DFT Analysis, Asian J. Chem., 35(2), 422–430 (2023).
https://doi.org/10.14233/ajchem.2023.26881
Li, Y., Deng, S., Cai, P., Wang, C., Wang, H., Shen, Y., Synthesis, electropolymerization, and electrochromic performances of two novel tetrathiafulvalene-thiophene assemblies, E-Polymers, 20(1), 382–392 (2020).
https://doi.org/10.1515/epoly-2020-0044
Nasri, A., Pétrissans, M., Fierro, V. and Celzard, A., Gas sensing based on organic composite materials: Review of sensor types, progresses and challenges, Mater Sci Semicond Process. 128 (2021).
https://doi.org/10.1016/j.mssp.2021.105744
Navas, I. O., Kamkar, M., Arjmand, M. and Sundararaj, U., Morphology evolution, molecular simulation, electrical properties, and rheology of carbon nanotube/polypropylene/polystyrene blend nanocomposites: Effect of molecular interaction between styrene-butadiene block copolymer and carbon nanotube, Polymers (Basel)., 13(2), 1–25 (2021).
https://doi.org/10.3390/polym13020230
Qin, Q., Hu, Y., Guo, S., Yang, Y., Lei, T., Cui, Z., Wang, H., Qin, S., PVDF-based composites for electromagnetic shielding application: a review, J Polym. Res., 30(3), (2023).
https://doi.org/10.1007/s10965-023-03506-y
Ramesan, M. T., Nushhat, K., Parvathi, K. and Anilkumar, T., Nickel oxide @ polyindole/phenothiazine blend nanocomposites: preparation, characterization, thermal, electrical properties and gas sensing applications, J. Mater. Sci. Mater. Electron., 30(14), 13719–13728 (2019).
https://doi.org/10.1007/s10854-019-01753-8
Ramirez-Balderrama, K., Orrantia-Borunda, E., Flores-Holguin, N., Calculation of global and local reactivity descriptors of carbodiimides, a DFT study, J. Theor. Comput. Chem., 16(3), (2017).
https://doi.org/10.1142/S0219633617500195
Sharma, P., Khare, K. P., Srivastava, R., Srivastava, A. and Kathal, R., Structural and electronic properties of n-vinylcarbazole - 3-methoxythiophene copolymer: DFT analysis, J. Phys. Conf. Ser. 2663(1), 012030 (2023).
https://doi.org/10.1088/1742-6596/2663/1/012030
Zhang, S. M., Yue, R. R., Zhou, W. Q., Xu, J. K., Electro-copolymerization of Poly(N-vinylcarbazole) and 3-Methylthiophene, Adv. Mater. Res., 200, 531–534, (2013).
https://doi.org/10.4028/www.scientific.net/AMR.800.531
Zhao, H., Chen, Y., Zhao, L., Liang, X. and Liu, Z., An efficient multi-color electrochromic electrode based on nanocomposite of aniline and o-toluidine copolymer with nickel oxide, Sol. Energy Mater. Sol. Cells, 257, 112374 (2023).
https://doi.org/10.1016/J.SOLMAT.2023.112374
Zhou, L., Zhu, H. and Zeng, W., Density functional theory study on the adsorption mechanism of sulphide gas molecules on α-fe2 o3 (001) surface, Inorganics., 9(11), (2021).