Open Access

Photoinduced electron-transfer from imidazole derivative to nano-semiconductors a New approach

N. Srinivasan sreene2008@gmail.com
Department of Chemistry, S.K.P. Engineering College, Thiruvannamalai, TN, India.


J. Environ. Nanotechnol., Volume 2, No 1 (2013) pp. 71-80

https://doi.org/10.13074/jent.2013.02.132004

PDF


Abstract

Bioactive imidazole derivative absorbs in the UV region at 305 nm. The interaction of imidazole derivative with nanoparticulate WO3, Fe2O3, Fe3O4, CuO, ZrO2 and Al2O3 has been studied by UV-visible absorption, FT-IR and fluorescence spectroscopies. The imidazole derivative adsorbs strongly on the surfaces of nanosemiconductor, the apparent binding constants for the association between nanomaterials and imidazole derivative have been determined from the fluorescence quenching. In the case of nanocrystalline insulator, fluorescence quenching through electron transfer from the excited state of the imidazole derivative to alumina is not possible. However, a possible mechanism for the quenching of fluorescence by the insulator is energy transfer, that is, energy transferred from the organic molecule to the alumina lattice. Based on Forster’s non-radiation energy transfer theory, the distance between the imidazole derivative and nanoparticles (r0 ~2.00 nm) as well as the critical energy transfer distance (R0 ~1.70 nm)has been calculated. The interaction between the imidazole derivative and nanosurfaces occurs through static quenching mechanism. The free energy change for electron transfer process has been calculated by applying RehmWeller equation.

Full Text

Reference


Alivisatos, A., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 271, 933-    937 (1996).

http://dx.doi.org/ 10.1126/science.271.5251.933

Chen, G.Z., Huang, X.Z., Xu, J.G., Wang, Z.B. and Zhang, Z.Z., Method of fluorescent Analysis, second ed., Science Press, Beijing, 1990, 123, 126 (Chapter 4).

Cyril, L., Earl, J.K. and Sperry, W.M., Biochemists Handbook, E & F.N. Spon, London, 1961.


He, W.Y., Li, Y., Xue, C.X., Hu, Z.D., Chen, X.G. and Sheng, F.L., Effect of Chinese medicine alpinetin on the structure of human serum albumin, Bioorg Med Chem., 13, 1837 (2005).

Hu, Y.J., Liu, Y. and Zhang. L.X., Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method, J Mol Struct., 750, 174 -178 (2005).

Hu, Y.J., Liu, Y. and Zhang. L.X., Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method, J Mol Struct., 750, 174 -178 (2005).

Hunter, K., Jason O’Young., Bernd Grohe., Mikko Karttunen. and Goldberg, A., The Flexible
Polyelectrolyte Hypothesis of Protein”Biomineral Interaction, Langmuir, 26, 18639–18646 (2010).

http://dx.doi.org/10.1021/la100401r

Jayabharathi, J., Thanikachalam, V., Saravanan, K. andSrinivasan, N., Iridium(III) complexes with orthometalated phenylimidazole ligands subtle turning of emission to the saturated green colour, J Fluoresc., 21, 507-519 (2011).

http://dx.doi.org/10.1007/s10895-010-0737-7

Jayamoorthy, K., Mohandas, T., Sakthivel, P. and Jayabharathi, J., 1-Phenyl-2-[4-(trifluoromethyl) phenyl]- 1H-benzimidazole, Acta Cryst., E69, o244 (2013).

Jean-François Lefebvre., Dominique Leclercq., Jean-PaulGisselbrecht. and Sébastien Richeter., Synthesis, Characterization, and Electronic Properties of Metalloporphyrins Annulated to Exocyclic Imidazole and Imidazolium Rings, Eur J Org Chem., 2010, 1912–1920 (2010).

http://dx.doi.org/ 10.1002/ejoc.200901310

Karunakaran, C., Anilkumar, P. and Gomathisankar, P., Photo production of iodine with nanoparticulate semiconductors and insulators, Chem Cent J., 123, 5:31(2011).

Kavarnos, G.J. and Turro, N.J., Photosensitization by reversible electron transfer: theories, experimental evidence, and examples, Chem Rev., 86, 401–449 (1986).

Kikuchi, K., Niwa, T., Takahashi, Y., Ikeda, H. and Miyashi. T., Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching, J Phys Chem., 97, 5070–5073 (1993).

http://dx.doi.org/ 10.1021/j100121a037

Ko Higashitani., McNamee, E. and Masaki Nakayama.,Formation of Large-Scale Flexible Transparent Conductive Films Using Evaporative Migration Characteristics of Au Nanoparticles, Langmuir, 27, 2080–2083(2011).

http://dx.doi.org/ 10.1021/la103902z

Li, J. and Zhang, Z., Optical properties and applications of hybrid semiconductor nanomaterials, Coord Chem Rev., 253, 3015-3041(2009).

http://dx.doi.org/10.1016/j.ccr.2009.07.017

Lin, B., Fu, Z. and Ji, Y., Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl Phy Lett., 79, 943-945 (1991).

http://dx.doi.org/10.1063/1.1394173

Madje, B.R., Patil, P.T., Shindalkar, S.S., Benjamin, S.B., Shingare, M.S. and Dongare, M.K., Faciletransesterification of β-ketoesters under solvent-free condition using borate zirconia solid acid catalyst,Catal Commun., 5, 353–357 (2004).

Moyano, F. and Rotello, M., Nano Meets Biology: Structure and Function at the Nanoparticle Interface, Langmuir, 27, 10376–10385 (2011).

http://dx.doi.org/10.1021%2Fla2004535

Parret, S., Savary, F.M., Fouassier, J.P. and Ramamurthy.P., Spin—orbit-coupling-induced triplet formation of triphenylpyrylium ion: a flash photolysis study, J Photochem Photobiol A: Chem., 83, 205–209 (1994).

http://dx.doi.org/10.1016/1010-6030(94)03826-0

Shin, E.J. and Kim, D., Substituent effect on the fluorescence quenching of various tetraphenylporphyrins by ruthenium tris(2,22 - bipyridine) complex, J Photochem Photobiol A:
Chem, 152, 25–31 (2002).

http://dx.doi.org/10.1016/S1010-6030(02)00189-2

Zhou, Z., Qian, S., Yao, S. and Zhang. Z., Electrontransfer in colloidal TiO2 semiconductors sensitized by hypocrellin A, Radiat Phys Chem., 65, 241–248 (2002).

http://dx.doi.org/10.1016/S0969-806X(02)00212-8.

Contact Us

Powered by

Powered by OJS