Nano-structured Molybdenum Trioxide Nano-hybrid based Conductive Platform for Breast Cancer Detection
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 418-426
Abstract
A recently published study describes the use of an electrochemical biosensor that employs a nanohybrid of MoO3. This hybrid material is synthesized using a one-pot hydrothermal process. NH2-functionalized multi-walled carbon nanotubes (MWCNTs) are renowned for their exceptional electrical characteristics, modest surface area, and fast electron transport capacities. The combination of MoO3 and NH2-MWCNTs produces an advanced immune sensing platform that improves the electrochemical performance and sensitivity in detecting HER-2. The Scanning Electron Microscopy (SEM) analysis of the synthesized nanocomposite demonstrates the presence of nanorods enveloped by slender MWCNT fibers, resulting in the creation of a compact network. The addition of NH2-MWCNTs greatly enhances electron transfer, resulting in a tenfold increase compared to pristine MoO3, which has an average surface area of 63 m² g⁻¹. The biosensor has exceptional sensitivity, approximately 26 A ng⁻¹ cm⁻² per decade, over a dynamic linear range of 10⁻⁶ to 10³ ng mL⁻¹. Additionally, it retains its effectiveness for around five weeks when maintained at a temperature of 4 °C. This immunological sensing platform utilizes anti-HER-2 antibodies to identify the presence of HER-2. Therefore, the MoO3 composite exhibits outstanding electrochemical performance, similar to APTES/MoO3 and APTES/MoO3@RGO (Reduced Graphene Oxide) electrodes. It has the potential to be used as a matrix for immunological sensing to identify various cancer biomarkers.
Full Text
Reference
Al-Kattan, A., Ryabchikov, Y.V., Baati, T., Chirvony, V., Sanchez-Royo, J.F., Sentis, M., Braguer, D., Timoshenko, V.Y., Esteve, M.A. and Kabashin, A.V., Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications. J. Mater. Chem., 4(48), 7852-7858 (2016).
https://doi.org/10.1039/C6TB02623K
Barabash, D., Barabash, A., & Pinaev, S., Radiation Resistant Composite for Biological Protection of the Personnel, Arch Tech Sci., 2(23), 67–76 (2020).
https://doi.org/10.7251/afts.2020.1223.067B
Casais-Molina, M.L., Cab, C., Canto, G., Medina, J. and Tapia, A., Carbon nanomaterials for breast cancer treatment, J. Nanomater., 1-9 (2018).
https://doi.org/10.1155/2018/2058613
Chen, W., Nanoparticle fluorescence based technology for biological applications, J. Nanosci. Nanotechnol., 8(3), 1019-1051 (2008).
https://doi.org/10.1166/jnn.2008.301
Cheng, W. and Compton, R.G., Electrochemical detection of nanoparticles by ‘nano-impact’methods, TrAC, Trends Anal. Chem., 58, 79-89 (2014).
https://doi.org/10.1016/j.trac.2014.01.008
Chiew, C., Morris, M.J. and Malakooti, M.H., Functional liquid metal nanoparticles: synthesis and applications, Mater. Adv., 2(24), 7799-7819 (2021).
https://doi.org/10.1039/D1MA00789K
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A. and Bray, F., Cancer statistics for the year 2020: An overview, Int J Cancer., 149(4), 778-789 (2021).
https://doi.org/10.1002/ijc.33588
Fu, K., Wang, R., Katase, T., Ohta, H., Koch, N. and Duhm, S., Stoichiometric and oxygen-deficient VO2 as versatile hole injection electrode for organic semiconductors, ACS Appl. Mater. Interfaces., 10(12), 10552-10559 (2018).
https://doi.org/10.1021/acsami.8b00026
Li, M., Huang, G., Chen, X., Yin, J., Zhang, P., Yao, Y., Shen, J., Wu, Y. and Huang, J., Perspectives on environmental applications of hexagonal boron nitride nanomaterials, Nano Today, 44, 101486 (2022).
https://doi.org/10.1016/j.nantod.2022.101486
Madhavi, M., Sasirooba, T. and Kumar, G. K., Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System, J. Internet Serv. Inf. Secur., 13, 177-192. (2023).
https://doi.org/10.58346/JISIS.2023.I2.011
Malathi, K., Shruthi, S.N., Madhumitha, N., Sreelakshmi, S., Sathya, U. and Sangeetha, P.M., Medical Data Integration and Interoperability through Remote Monitoring of Healthcare Devices, J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl., 15(2), 60-72 (2024).
https://doi.org/10.58346/JOWUA.2024.I2.005
Malik, U., Korcoban, D., Mehla, S., Kandjani, A.E., Sabri, Y.M., Balendhran, S. and Bhargava, S.K.,Fabrication of fractal structured soot templated titania-silver nano-surfaces for photocatalysis and SERS sensing. Appl. Surf. Sci., 594, 153383 (2022).
https://doi.org/10.1016/j.apsusc.2022.153383
Nazari, M.A., Maleki, A., Assad, M.E.H., Rosen, M.A., Haghighi, A., Sharabaty, H. and Chen, L., A review of nanomaterial incorporated phase change materials for solar thermal energy storage, Sol. Energy., 228, 725-743 (2021).
https://doi.org/10.1016/j.solener.2021.08.051
Paczesny, S., Hakim, F.T., Pidala, J., Cooke, K.R., Lathrop, J., Griffith, L.M., Hansen, J., Jagasia, M., Miklos, D., Pavletic, S. and Parkman, R., National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: III. The 2014 Biomarker Working Group Report, Biol Blood Marrow Transplant., 21(5), 780-792 (2015).
https://doi.org/10.1016/j.bbmt.2015.01.003
Prakash, N.G., Dhananjaya, M., Narayana, A.L. and Hussain, O.M., One-dimensional MoO3/Pd nanocomposite electrodes for high-performance supercapacitors, Mater. Res. Express, 6(8), (2019).
https://doi.org/10.1088/2053-1591/ab273e
Qiao, J.C., Wang, Q., Pelletier, J.M., Kato, H., Casalini, R., Crespo, D., Pineda, E., Yao, Y. and Yang, Y., Structural heterogeneities and mechanical behavior of amorphous alloys, Prog. Mater. Sci., 104, 250-329 (2019).
https://doi.org/10.1016/j.pmatsci.2019.04.005
Ramakrishnan, J., Ravi Sankar, G., and Thavamani, K., Publication Growth and Research in India on Lung Cancer Literature: A Bibliometric Study, Indian Journal of Information Sources and Services, 9(S1), 44–47 (2019).
https://doi.org/10.51983/ijiss.2019.9.S1.566
Salari, H. and Hosseini, H.H., In situ synthesis of visible-light-driven a-MnO2 nanorod/AgBr nanocomposites for increased photoinduced charge separation and enhanced photocatalytic activity, Mater. Res. Bull., 133, 111046 (2021).
https://doi.org/10.1016/j.materresbull.2020.111046
Schneider, P., Hampel, H. and Buerger, K., Biological marker candidates of Alzheimer's disease in blood, plasma, and serum, CNS Neurosci. Ther., 15(4), 358-374 (2009).
https://doi.org/10.1111/j.1755-5949.2009.00104.x
Shchegolkov, A.V., Jang, S.H., Shchegolkov, A.V., Rodionov, Y.V., Sukhova, A.O. and Lipkin, M.S., A brief overview of electrochromic materials and related devices: A nanostructured materials perspective, J. Nanomater., 11(9), 2376 (2021).
https://doi.org/10.3390/nano11092376
Spagnolie, S.E., Complex fluids in biological systems. Bio Med Phy Biomed Eng., (2015).
Tan, G.R., Wang, M., Hsu, C.Y., Chen, N. and Zhang, Y., Small upconverting fluorescent nanoparticles for biosensing and bioimaging, Adv. Opt. Mater., 4(7), 984-997 (2016).
https://doi.org/10.1002/adom.201600141
Uyan, A. A Review on the Potential Usage of Lionfishes (Pterois spp.) in Biomedical and Bioinspired Applications, Natural and Engineering Sciences, 7(2), 214-227 (2022).
https://doi.org/10.28978/nesciences.1159313
Waks, A. G. and Winer, E. P. Breast cancer treatment: a review, Jama, 321(3), 288-300 (2019).
https://doi.org/10.1001/jama.2018.19323.
Watkins, E. J., Overview of breast cancer, J. Am. Acad. Physician Assist., 32(10), 13-17 (2019).
https://doi.org/10.1097/01.JAA.0000580524.95733.3d
Yang, W., Wang, L., Mettenbrink, E.M., DeAngelis, P.L. and Wilhelm, S., Nanoparticle toxicology, Annu. Rev. Pharmacol. Toxicol., 61(1), 269-289 (2021).
https://doi.org/10.1146/annurev-pharmtox-032320-110338
Zadan, M., Chiew, C., Majidi, C. and Malakooti, M.H., Liquid metal architectures for soft and wearable energy harvesting devices, Multifunct. Mater., 4(1), 012001 (2021).