Open Access

Nano-structured Molybdenum Trioxide Nano-hybrid based Conductive Platform for Breast Cancer Detection

N. Bharatha Devi, bharathi.actech@gmail.com
Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TN, India
B. Satyasri, Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, TN, India R. Ramya, Department of Nano Electronics Materials and Sensors, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TN, India R. Kanmani, Department of ECE, SNS College of Technology, Coimbatore, TN, India G. Vinuja Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, TN, India


J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 418-426

https://doi.org/10.13074/jent.2024.06.242562

PDF


Abstract

A recently published study describes the use of an electrochemical biosensor that employs a nanohybrid of MoO3. This hybrid material is synthesized using a one-pot hydrothermal process. NH2-functionalized multi-walled carbon nanotubes (MWCNTs) are renowned for their exceptional electrical characteristics, modest surface area, and fast electron transport capacities. The combination of MoO3 and NH2-MWCNTs produces an advanced immune sensing platform that improves the electrochemical performance and sensitivity in detecting HER-2. The Scanning Electron Microscopy (SEM) analysis of the synthesized nanocomposite demonstrates the presence of nanorods enveloped by slender MWCNT fibers, resulting in the creation of a compact network. The addition of NH2-MWCNTs greatly enhances electron transfer, resulting in a tenfold increase compared to pristine MoO3, which has an average surface area of 63 m² g⁻¹. The biosensor has exceptional sensitivity, approximately 26 A ng⁻¹ cm⁻² per decade, over a dynamic linear range of 10⁻⁶ to 10³ ng mL⁻¹. Additionally, it retains its effectiveness for around five weeks when maintained at a temperature of 4 °C. This immunological sensing platform utilizes anti-HER-2 antibodies to identify the presence of HER-2. Therefore, the MoO3 composite exhibits outstanding electrochemical performance, similar to APTES/MoO3 and APTES/MoO3@RGO (Reduced Graphene Oxide) electrodes. It has the potential to be used as a matrix for immunological sensing to identify various cancer biomarkers.

Full Text

Reference


Al-Kattan, A., Ryabchikov, Y.V., Baati, T., Chirvony, V., Sanchez-Royo, J.F., Sentis, M., Braguer, D., Timoshenko, V.Y., Esteve, M.A. and Kabashin, A.V., Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications. J. Mater. Chem., 4(48), 7852-7858 (2016).

https://doi.org/10.1039/C6TB02623K

Barabash, D., Barabash, A., & Pinaev, S., Radiation Resistant Composite for Biological Protection of the Personnel, Arch Tech Sci., 2(23), 67–76 (2020).

https://doi.org/10.7251/afts.2020.1223.067B

Casais-Molina, M.L., Cab, C., Canto, G., Medina, J. and Tapia, A., Carbon nanomaterials for breast cancer treatment, J. Nanomater., 1-9 (2018).

https://doi.org/10.1155/2018/2058613

Chen, W., Nanoparticle fluorescence based technology for biological applications, J. Nanosci. Nanotechnol., 8(3), 1019-1051 (2008).

https://doi.org/10.1166/jnn.2008.301

Cheng, W. and Compton, R.G., Electrochemical detection of nanoparticles by ‘nano-impact’methods, TrAC, Trends Anal. Chem., 58, 79-89 (2014).

https://doi.org/10.1016/j.trac.2014.01.008

Chiew, C., Morris, M.J. and Malakooti, M.H., Functional liquid metal nanoparticles: synthesis and applications, Mater. Adv., 2(24), 7799-7819 (2021).

https://doi.org/10.1039/D1MA00789K

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A. and Bray, F., Cancer statistics for the year 2020: An overview, Int J Cancer., 149(4), 778-789 (2021).

https://doi.org/10.1002/ijc.33588

Fu, K., Wang, R., Katase, T., Ohta, H., Koch, N. and Duhm, S., Stoichiometric and oxygen-deficient VO2 as versatile hole injection electrode for organic semiconductors, ACS Appl. Mater. Interfaces., 10(12), 10552-10559 (2018).

https://doi.org/10.1021/acsami.8b00026

Li, M., Huang, G., Chen, X., Yin, J., Zhang, P., Yao, Y., Shen, J., Wu, Y. and Huang, J., Perspectives on environmental applications of hexagonal boron nitride nanomaterials, Nano Today, 44, 101486 (2022).

https://doi.org/10.1016/j.nantod.2022.101486

Madhavi, M., Sasirooba, T. and Kumar, G. K., Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System, J. Internet Serv. Inf. Secur., 13, 177-192. (2023).

https://doi.org/10.58346/JISIS.2023.I2.011

Malathi, K., Shruthi, S.N., Madhumitha, N., Sreelakshmi, S., Sathya, U. and Sangeetha, P.M., Medical Data Integration and Interoperability through Remote Monitoring of Healthcare Devices, J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl., 15(2), 60-72 (2024).

https://doi.org/10.58346/JOWUA.2024.I2.005

Malik, U., Korcoban, D., Mehla, S., Kandjani, A.E., Sabri, Y.M., Balendhran, S. and Bhargava, S.K.,Fabrication of fractal structured soot templated titania-silver nano-surfaces for photocatalysis and SERS sensing. Appl. Surf. Sci., 594, 153383 (2022).

https://doi.org/10.1016/j.apsusc.2022.153383

Nazari, M.A., Maleki, A., Assad, M.E.H., Rosen, M.A., Haghighi, A., Sharabaty, H. and Chen, L., A review of nanomaterial incorporated phase change materials for solar thermal energy storage, Sol. Energy., 228, 725-743 (2021).

https://doi.org/10.1016/j.solener.2021.08.051

Paczesny, S., Hakim, F.T., Pidala, J., Cooke, K.R., Lathrop, J., Griffith, L.M., Hansen, J., Jagasia, M., Miklos, D., Pavletic, S. and Parkman, R., National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: III. The 2014 Biomarker Working Group Report, Biol Blood Marrow Transplant., 21(5), 780-792 (2015).

https://doi.org/10.1016/j.bbmt.2015.01.003

Prakash, N.G., Dhananjaya, M., Narayana, A.L. and Hussain, O.M., One-dimensional MoO3/Pd nanocomposite electrodes for high-performance supercapacitors, Mater. Res. Express, 6(8), (2019).

https://doi.org/10.1088/2053-1591/ab273e

Qiao, J.C., Wang, Q., Pelletier, J.M., Kato, H., Casalini, R., Crespo, D., Pineda, E., Yao, Y. and Yang, Y., Structural heterogeneities and mechanical behavior of amorphous alloys, Prog. Mater. Sci., 104, 250-329 (2019).

https://doi.org/10.1016/j.pmatsci.2019.04.005

Ramakrishnan, J., Ravi Sankar, G., and Thavamani, K., Publication Growth and Research in India on Lung Cancer Literature: A Bibliometric Study, Indian Journal of Information Sources and Services, 9(S1), 44–47 (2019).

https://doi.org/10.51983/ijiss.2019.9.S1.566

Salari, H. and Hosseini, H.H., In situ synthesis of visible-light-driven a-MnO2 nanorod/AgBr nanocomposites for increased photoinduced charge separation and enhanced photocatalytic activity, Mater. Res. Bull., 133, 111046 (2021).

https://doi.org/10.1016/j.materresbull.2020.111046

Schneider, P., Hampel, H. and Buerger, K., Biological marker candidates of Alzheimer's disease in blood, plasma, and serum, CNS Neurosci. Ther., 15(4), 358-374 (2009).

https://doi.org/10.1111/j.1755-5949.2009.00104.x

Shchegolkov, A.V., Jang, S.H., Shchegolkov, A.V., Rodionov, Y.V., Sukhova, A.O. and Lipkin, M.S., A brief overview of electrochromic materials and related devices: A nanostructured materials perspective, J. Nanomater., 11(9), 2376 (2021).

https://doi.org/10.3390/nano11092376

Spagnolie, S.E., Complex fluids in biological systems. Bio Med Phy Biomed Eng., (2015).

Tan, G.R., Wang, M., Hsu, C.Y., Chen, N. and Zhang, Y., Small upconverting fluorescent nanoparticles for biosensing and bioimaging, Adv. Opt. Mater., 4(7), 984-997 (2016).

https://doi.org/10.1002/adom.201600141

Uyan, A. A Review on the Potential Usage of Lionfishes (Pterois spp.) in Biomedical and Bioinspired Applications, Natural and Engineering Sciences, 7(2), 214-227 (2022).

https://doi.org/10.28978/nesciences.1159313

Waks, A. G. and Winer, E. P. Breast cancer treatment: a review, Jama, 321(3), 288-300 (2019).

https://doi.org/10.1001/jama.2018.19323.

Watkins, E. J., Overview of breast cancer, J. Am. Acad. Physician Assist., 32(10), 13-17 (2019).

https://doi.org/10.1097/01.JAA.0000580524.95733.3d

Yang, W., Wang, L., Mettenbrink, E.M., DeAngelis, P.L. and Wilhelm, S., Nanoparticle toxicology, Annu. Rev. Pharmacol. Toxicol., 61(1), 269-289 (2021).

https://doi.org/10.1146/annurev-pharmtox-032320-110338

Zadan, M., Chiew, C., Majidi, C. and Malakooti, M.H., Liquid metal architectures for soft and wearable energy harvesting devices, Multifunct. Mater., 4(1), 012001 (2021).

https://doi.org/10.1088/2399-7532/abd4f0

Contact Us

Powered by

Powered by OJS