Open Access

Exploring the Influence of Stirring Temperature on the Fatigue and Mechanical Characteristics of AA5128/SiC Nanocomposites

D. Sudarsan, dssudersun1976@gmail.com
Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, TN, India
A. Bovas Herbert Bejaxhin, Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, TN, India S. Raj Kumar Department of Mechanical Engineering, Institute of Technology, Hawassa University, Hawassa, Ethiopia


J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 194-200

https://doi.org/10.13074/jent.2024.06.241551

PDF


Abstract

Aluminum is anticipated to continue being the primary material for various essential uses like aviation and automobiles. This is because of the great resistance to various climatic conditions, required and controllable mechanical qualities, and high fatigue resistance. Aluminum nanocomposites like AA5128/SiC can be produced by several liquid metallurgical techniques. The main challenges for this method in producing nanocomposites involve ensuring a consistent distribution of strengthening components and controlling any chemical interactions between the strengthening compositions and the matrix. Intended for structural use, specifically in the aircraft industry, developing cost-effective nanocomposites with operational and geometric flexibility poses a significant ongoing challenge. Various methods of producing AA5128/SiC nanocomposites yield distinct mechanical characteristics. Nine nanocomposites were synthesized in the current research by varying the stirring temperatures (810, 860, and 910℃) with different levels of SiC added at 0, 6, 8, and 10 wt %. The composite consisting of 10 wt % SiC and agitated at 860℃ showed improved characteristics in tensile, hardness, and fatigue tests. The composite containing 10 wt % SiC with a stirring temperature (ST) of 860℃ led to a 22.3% rise in tensile strength, a 16.2% rise in Vickers hardness number, and a 40.2% reduction in ductility compared to the sample without nanoparticles. At 810℃ (ST), the fatigue life at a stress level of 100 MPa raised by 18.5% compared to the 10 wt% nanocomposite.

Full Text

Reference


Abed, R. M., Khenyab, A. Y., Alalkawi, H. J. M., Development in mechanical and fatigue properties of AA6061/AL2O3 nanocomposites under stirring temperature (ST), Eastern-European J. Enterp. Technol. 4(12(112)), 47–52 (2021).

https://doi.org/10.15587/1729-4061.2021.238588

Al- Jaafari, M. A. A., Heat Treatments Effects on the Fatigue Behaviors of Aluminum Nano-Composite Alloys, Iraqi J. Sci. , 4397–4405 (2021).

https://doi.org/10.24996/ijs.2021.62.11(SI).20

Altinkok, N., Application of the full factorial design to modelling of Al 2 O 3 /SiC particle reinforced al-matrix composites, Steel Compos. Struct. 21(6), 1327–1345 (2016).

https://doi.org/10.12989/scs.2016.21.6.1327

Arab, M., Azadi, M., Mirzaee, O., Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites, Mater. Chem. Phys. 253, 123259 (2020).

https://doi.org/10.1016/j.matchemphys.2020.123259

Chandra Kandpal, B., Kumar, J., Singh, H., Manufacturing and technological challenges in Stir casting of metal matrix composites– A Review, Mater. Today Proc. 5(1), 5–10 (2018).

https://doi.org/10.1016/j.matpr.2017.11.046

Cheng, L., Wang, Y., Huang, D., Nguyen, T., Jiang, Y., Yu, H., Ding, N., Ding, G., Jiao, Z., Facile synthesis of size-tunable CuO/graphene composites and their high photocatalytic performance, Mater. Res. Bull. 61, 409–414 (2015).

https://doi.org/10.1016/j.materresbull.2014.10.036

Firouz, F. M., Mohamed, E., Lotfy, A., Daoud, A., Abou El-Khair, M. T., Thermal expansion and fatigue properties of automotive brake rotor made of AlSi–SiC composites, Mater. Res. Express 6(12), 1265d2 (2020).

https://doi.org/10.1088/2053-1591/ab6129

Girimurugan, R., Shilaja, C., Mayakannan, S., Rajesh, S., Aravinth, B., Experimental investigations on flexural and compressive properties of epoxy resin matrix sugarcane fiber and tamarind seed powder reinforced bio-composites, Mater. Today Proc. 66, 822–828 (2022).

https://doi.org/10.1016/j.matpr.2022.04.386

GUAN, L., GENG, L., ZHANG, H., HUANG, L., Effects of stirring parameters on microstructure and tensile properties of (ABOw+SiCp)/6061Al composites fabricated by semi-solid stirring technique, Trans. Nonferrous Met. Soc. China 21, s274–s279 (2011).

https://doi.org/10.1016/S1003-6326(11)61590-2

IIZUKA, T., OUYANG, Q., Strength and fatigue properties of SiC particle-reinforced AC4C based aluminum alloy composites fabricated by melt stirring-gravity casting, J. Japan Inst. Light Met. 63(11), 400–405 (2013).

https://doi.org/10.2464/jilm.63.400

Jayaraman, R., Girimurugan, R., Suresh, V., Shilaja, C., Mayakannan, S., Improvement on Tensile Properties of Epoxy Resin Matrix Sugarcane Fiber and Tamarind Seed Powder Reinforced Hybrid Bio-Composites, ECS Trans. 107(1), 7265–7272 (2022).

https://doi.org/10.1149/10701.7265ecst

Jiang, J., Wang, Y., Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring, Mater. Sci. Eng. A 639, 350–358 (2015).

https://doi.org/10.1016/j.msea.2015.04.064

Kamali, F., Azadi, M., An evaluation of tribological and mechanical properties of Al-Si-Cu alloy with nano-clay particles reinforcement, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(19–20), 7062–7076 (2019).

https://doi.org/10.1177/0954406219869746

KHOSRAVI, H., BAKHSHI, H., SALAHINEJAD, E., Effects of compocasting process parameters on microstructural characteristics and tensile properties of A356–SiCp composites, Trans. Nonferrous Met. Soc. China 24(8), 2482–2488 (2014).

https://doi.org/10.1016/S1003-6326(14)63374-4

Mamoon, A., Al-Jaafari, A., Fatigue Behavior of Aluminum SiC Nano Composites Material with Different Reinforcement Ratio, IOP Conf. Ser. Mater. Sci. Eng. 870(1), 012159 (2020).

https://doi.org/10.1088/1757-899X/870/1/012159

Manikandan, R., Ponnusamy, P., Nanthakumar, S., Gowrishankar, A., Balambica, V., Girimurugan, R., Mayakannan, S., Optimization and experimental investigation on AA6082/WC metal matrix composites by abrasive flow machining process, Mater Today Proc. (2023).

https://doi.org/10.1016/j.matpr.2023.03.274

Muralidhar, A., Venkata Sai, P., Charan Kumar, B., Siva Rama Krishna, A., Venkateswara Rao, M., Damodara Naidu, V., Mechanical, microstructural and tribological behavior of stir cast Al8011/TiB2/SiC hybrid metal matrix composites, Mater. Today Proc. 62, 7446–7454 (2022).

https://doi.org/10.1016/j.matpr.2022.03.320

Murugan, G., Loganathan, G. B., Sivaraman, G., Shilaja, C., Mayakannan, S., Compressive Behavior of Tamarind Shell Powder and Fine Granite Particles Reinforced Epoxy Matrix Based Hybrid Bio-Composites, ECS Trans. 107(1), 7111–7118 (2022).

https://doi.org/10.1149/10701.7111ecst

Rutecka, A., Kowalewski, Z. L., Pietrzak, K., Dietrich, L., Makowska, K., Woźniak, J., Kostecki, M., Bochniak, W., Olszyna, A., Damage development of Al/SiC metal matrix composite under fatigue, creep and monotonic loading conditions, Procedia Eng. 10, 1420–1425 (2011).

https://doi.org/10.1016/j.proeng.2011.04.236

Shin, C. S., Huang, J. C., Effect of temper, specimen orientation and test temperature on the tensile and fatigue properties of SiC particles reinforced PM 6061 Al alloy, Int. J. Fatigue 32(10), 1573–1581 (2010).

https://doi.org/10.1016/j.ijfatigue.2010.02.015

Singh, N. K., Sethuraman, B., Development and Characterization of Aluminium AA7075 Hybrid Composite Foams (AHCFs) Using SiC and TiB2 Reinforcement, Int. J. Met. 18(1), 212–227 (2024).

https://doi.org/10.1007/s40962-023-01009-6

Soltani, S., Azari Khosroshahi, R., Taherzadeh Mousavian, R., Jiang, Z.-Y., Fadavi Boostani, A., Brabazon, D., Stir casting process for manufacture of Al–SiC composites, Rare Met. 36(7), 581–590 (2017).

https://doi.org/10.1007/s12598-015-0565-7

Srinivasan, R., Karunakaran, S., Hariprabhu, M., Arunbharathi, R., Suresh, S., Nanthakumar, S., Ahammad, S. K. H., Mayakannan, S., Jayakumar, M., Investigation on the Mechanical Properties of Powder Metallurgy-Manufactured AA7178/ZrSiO4 Nanocomposites, Adv. Mater. Sci. Eng. 2023, 1–11 (2023).

https://doi.org/10.1155/2023/3085478

Suresh, N., Balamurugan, L., Vasantha Geethan, K. A., Sathish Kumar, M., Statistical analysis of mechanical properties of Al-SiC-WC and Al-SiC-Al2O3 hybrid composites, Mater. Today Proc. 42, 312–318 (2021).

https://doi.org/10.1016/j.matpr.2020.09.211

Wei, X., Xin, D., Morisako, I., Takahashi, J., Tatsumi, K., Reliability evaluation of thick Ag wire bonding on Ni pad for power devices, Microelectron. Reliab. 152, 115304 (2024).

https://doi.org/10.1016/j.microrel.2023.115304

Yu, X., Bakhtiari, H., Zhou, J., Bidgoli, M. O., Asemi, K., Investigating the Effect of Reinforcing Particles Size and Content on Tensile and Fatigue Properties of Heat-Treated Al7075-SiC Composites Fabricated by the Stir Casting Method, JOM 74(5), 1859–1869 (2022).

https://doi.org/10.1007/s11837-022-05248-6

Zhang, W. Y., Du, Y. H., Zhang, P., Wang, Y. J., Air-isolated stir casting of homogeneous Al-SiC composite with no air entrapment and Al4C3, J. Mater. Process. Technol. 271, 226–236 (2019).

https://doi.org/10.1016/j.jmatprotec.2019.04.001

Zou, H., Miao, D., Sun, H., Wang, X., Preparation of Dimpled Polystyrene–Silica Colloidal Nanocomposite Particles, Langmuir 34(47), 14302–14308 (2018).

https://doi.org/10.1021/acs.langmuir.8b02782

Contact Us

Powered by

Powered by OJS