Open Access

A Concise Overview of Effect of Nanomaterials in Soil and Associated Microbiota

Subhrajyoti Rath, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, TN, India Movva Harshavardhan , Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, TN, India Priyanka Srivastava priyanka@vit.ac.in
Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, TN, India


J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 183-193

https://doi.org/10.13074/jent.2024.06.241544

PDF


Abstract

Engineered nanomaterials are a cause of concern for environment in entirety due to their unregulated release, which in turn is due to their unregulated synthesis/ production, disposal and continuously rising applications in multiple fields. Although a complete account of impact of these particles in environment is absent, it has already drawn much attention of scientists and crucial work is being done in this field. Current report intends to deliberate on issues related to the harmful impacts of waste containing nanoparticles, particularly on soil and organisms therein. Particularly, we focus on the toxicity of nanoparticles and how they affect soil habitats. In addition, this paper discusses major prevention and risk management approaches. The increased use of nanoparticles (NPs) resulted in their accumulation in the environment, such as soil, generating concern about their hazards. Industrial nanoparticles contain heavy metals, which may cause problems due to toxicity and bioaccumulation. Nanowaste treatment requires understanding of chemical, physical, and biological properties of NPs. Waste management also requires thorough risk assessment of new materials.

Full Text

Reference


Adhikari, T., Kundu, S., Biswas, A. K., Kundu, S., Tarafdar, J. C., Rao, A. S., Effect of Copper Oxide Nano Particle on Seed Germination of Selected Crops, J. Agric. Sci. Technol. A 2(May 2014), 815–823 (2012).

Ameen, F., Alsamhary, K., Alabdullatif, J. A., ALNadhari, S., A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi, Ecotoxicol. Environ. Saf. 213, 112027 (2021).

https://doi.org/10.1016/j.ecoenv.2021.112027

Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., Tufenkji, N., Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating, Environ. Sci. Nano 4(4), 907–918 (2017).

https://doi.org/10.1039/c6en00567e

Auría-Soro, C., Nesma, T., Juanes-Velasco, P., Landeira-Viñuela, A., Fidalgo-Gomez, H., Acebes-Fernandez, V., Gongora, R., Almendral Parra, M. J., Manzano-Roman, R., Fuentes, M., Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine, Nanomaterials 9(10), 1365 (2019).

https://doi.org/10.3390/nano9101365

Bakand, S., Hayes, A., Toxicological Considerations , Toxicity Assessment , and Risk Management of Inhaled Nanoparticles, 1–17 (2016).

https://doi.org/10.3390/ijms17060929

Bakht, B. K., Iftikhar, M., Gul, I., Ali, M. A., Shah, G. M., Arshad, M., Effect of nanoparticles on crop growth, Nanomater. Soil Remediat. (December), 183–201 (2020).

https://doi.org/10.1016/B978-0-12-822891-3.00009-8

Baldrian, P., Větrovský, T., Scaling down the analysis of environmental processes: Monitoring: Enzyme activity in natural substrates on a millimeter: Resolution scale, Appl. Environ. Microbiol. 78(9), 3473–3475 (2012).

https://doi.org/10.1128/AEM.07953-11

Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., José-Yacamán, M., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil, Sci. Total Environ. 515–516, 60–69 (2015).

https://doi.org/10.1016/j.scitotenv.2015.02.014

Ben-moshe, T., Frenk, S., Dror, I., Minz, D., Berkowitz, B., Chemosphere Effects of metal oxide nanoparticles on soil properties, Chemosphere 90(2), 640–646 (2013).

https://doi.org/10.1016/j.chemosphere.2012.09.018

Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., Yin, L., An Ecological Perspective on Nanomaterial Impacts in the Environment, J. Environ. Qual. 39(6), 1954–1965 (2010).

https://doi.org/10.2134/jeq2009.0479

Bhatia, S., Natural Polymer Drug Delivery Systems Nanoparticles: Nanoparticles, Mammals and microbes. Natural Polymer Drug Delivery Systems Nanoparticles: Nanoparticles, Mammals and microbes, (2016).

ISBN 9783319411286

Cao, J., Feng, Y., Lin, X., Wang, J., Arbuscular Mycorrhizal Fungi Alleviate the Negative Effects of Iron Oxide Nanoparticles on Bacterial Community in Rhizospheric Soils, 4(February 2016), 1–12 (2020).

https://doi.org/10.3389/fenvs.2016.00010

Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., Ceccanti, B., The Effect of Metal Oxide Nanoparticles on Functional Bacteria and Metabolic Profiles in Agricultural Soil, Bull. Environ. Contam. Toxicol. 94(4), 490–495 (2015).

https://doi.org/10.1007/s00128-015-1485-9

Colman, B. P., Arnaout, C. L., Anciaux, S., Gunsch, C. K., Hochella, M. F., Kim, B., Lowry, G. V., McGill, B. M., Reinsch, B. C., Richardson, C. J., Unrine, J. M., Wright, J. P., Yin, L., Bernhardt, E. S., Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario, PLoS One., 8(2), (2013).

https://doi.org/10.1371/journal.pone.0057189

Damodaran, T., Mishra, V. K., Jha, S. K., Pankaj, U., Gupta, G., Gopal, R., Identification of Rhizosphere Bacterial Diversity with Promising Salt Tolerance , PGP Traits and Their Exploitation for Seed Germination Enhancement in Sodic Soil, Agric. Res. 8(1), 36–43 (2019).

https://doi.org/10.1007/s40003-018-0343-5

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., Hart, A. J., Carbon Nanotubes: Present and Future Commercial Applications, Science (80-. ). 339(6119), 535–539 (2013).

https://doi.org/10.1126/science.1222453

Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J., CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat, J Nanoparticle Res., 14(9), (2012).

https://doi.org/10.1007/s11051-012-1125-9

Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H., TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, J. Environ. Monit. 13(4), 822–828 (2011).

https://doi.org/10.1039/c0em00611d

Dubey, A., Mailapalli, D. R., Nanofertilisers, Nanopesticides, Nanosensors of Pest and Nanotoxicity in Agriculture, (February 2017), 307–330 (2016).

https://doi.org/10.1007/978-3-319-26777-7_7

Ealias, A. M., Saravanakumar, M. P., A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf Ser Mater Sci Eng. 263(3), (2017).

https://doi.org/10.1088/1757-899X/263/3/032019

Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., Fotovat, A., Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res. 146(1), 101–106 (2012).

https://doi.org/10.1007/s12011-011-9222-7

Fojtová, D., Vašíčková, J., Grillo, R., Bílková, Z., Šimek, Z., Neuwirthová, N., Kah, M., Hofman, J., Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants, Environ. Chem. 16(6), 470 (2019).

https://doi.org/10.1071/EN19057

Gottschalk, F., Nowack, B., The release of engineered nanomaterials to the environment, J. Environ. Monit. 13(5), 1145–1155 (2011).

https://doi.org/10.1039/c0em00547a

Hong, J., Rico, C. M., Zhao, L., Adeleye, A. S., Keller, A. A., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa), Environ. Sci. Process. Impacts 17(1), 177–185 (2015).

https://doi.org/10.1039/c4em00551a

Jin, L., Son, Y., Yoon, T. K., Kang, Y. J., Kim, W., Chung, H., High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass, Ecotoxicol. Environ. Saf. 88, 9–15 (2013).

https://doi.org/10.1016/j.ecoenv.2012.10.031

Jośko, I., Oleszczuk, P., Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity, Chemosphere 92(1), 91–99 (2013).

https://doi.org/10.1016/j.chemosphere.2013.02.048

Kah, M., Tufenkji, N., White, J. C., Nano-enabled strategies to enhance crop nutrition and protection, Nat. Nanotechnol. 14(6), 532–540 (2019).

https://doi.org/10.1038/s41565-019-0439-5

Keller, A. A., Huang, Y., Nelson, J., Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS, J Nanoparticle Res., 20(4), (2018).

https://doi.org/10.1007/s11051-018-4192-8

Khan, S. T., Adil, S. F., Shaik, M. R., Alkhathlan, H. Z., Khan, M., Khan, M., Engineered nanomaterials in soil: Their impact on soil microbiome and plant health, Plants 11(1), 1–25 (2022).

https://doi.org/10.3390/plants11010109

Kibbey, T. C. G., Strevett, K. A., The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings, Chemosphere 221, 703–707 (2019).

https://doi.org/10.1016/j.chemosphere.2019.01.091

Kühnel, D., Nickel, C., The OECD expert meeting on ecotoxicology and environmental fate - Towards the development of improved OECD guidelines for the testing of nanomaterials, Sci. Total Environ. 472, 347–353 (2014).

https://doi.org/10.1016/j.scitotenv.2013.11.055

Kumar, A., Gupta, K., Dixit, S., Mishra, K., Srivastava, S., A review on positive and negative impacts of nanotechnology in agriculture, Int. J. Environ. Sci. Technol. 16(4), 2175–2184 (2019).

https://doi.org/10.1007/s13762-018-2119-7

Kumar, N., Shah, V., Walker, V. K., Influence of a nanoparticle mixture on an arctic soil community, Environ. Toxicol. Chem. 31(1), 131–135 (2012).

https://doi.org/10.1002/etc.721

Kumar, S., Masurkar, P., Sravani, B., Bag, D., Sharma, K. R., Singh, P., Korra, T., Meena, M., Swapnil, P., Rajput, V. D., Minkina, T., A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants, J Nanoparticle Res., 25(4), 2023.

https://doi.org/10.1007/s11051-023-05708-3

Kumari, M., Khan, S. S., Pakrashi, S., Mukherjee, A., Chandrasekaran, N., Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, J. Hazard. Mater. 190(1–3), 613–621 (2011).

https://doi.org/10.1016/j.jhazmat.2011.03.095

Liao, V. H. C., Nanoparticles in the Environment and Nanotoxicology, Nanomaterials 13(6), 13–14 (2023).

https://doi.org/10.3390/nano13061053

López-Moreno, M. L., De La Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R., Gardea-Torresdey, J. L., X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of ceo2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food Chem. 58(6), 3689–3693 (2010).

https://doi.org/10.1021/jf904472e

Ma, Y., He, X., Zhang, P., Zhang, Z., Guo, Z., Tai, R., Xu, Z., Zhang, L., Ding, Y., Zhao, Y., Chai, Z., Phytotoxicity and biotransformation of La 2O 3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus), Nanotoxicology 5(4), 743–753 (2011).

https://doi.org/10.3109/17435390.2010.545487

Malakar, A., Kanel, S. R., Ray, C., Snow, D. D., Nadagouda, M. N., Nanomaterials in the Environment, Human Exposure Pathway, and Health Effects: A 2 Review, Sci. Total Environ. 759, 143470 (2021).

https://doi.org/10.1016/j.scitotenv.2020.143470

Moon, Y. S., Park, E. S., Kim, T. O., Lee, H. S., Lee, S. E., SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles, Environ. Toxicol. Pharmacol. 38(3), 922–931 (2014).

https://doi.org/10.1016/j.etap.2014.10.002

Mousavi Kouhi, S. M., Lahouti, M., Ganjeali, A., Entezari, M. H., Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: Anatomical and ultrastructural responses, Environ. Sci. Pollut. Res. 22(14), 10733–10743 (2015).

https://doi.org/10.1007/s11356-015-4306-0

Mukherjee, K., Acharya, K., Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats, Arch. Environ. Contam. Toxicol. 75(2), 175–186 (2018).

https://doi.org/10.1007/s00244-018-0519-9

Peyrot, C., Wilkinson, K. J., Desrosiers, M., Sauvé, S., Effects of silver nanoparticles on soil enzyme activities with and without added organic matter, Environ. Toxicol. Chem. 33(1), 115–125 (2014).

https://doi.org/10.1002/etc.2398

Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyaya, D., Gromakova, N., Effect of nanoparticles on crops and soil microbial communities, J. Soils Sediments 18(6), 2179–2187 (2018).

https://doi.org/10.1007/s11368-017-1793-2

Rajput, V. D., Singh, A., Singh, V. K., Minkina, T. M., Sushkova, S., Impact of nanoparticles on soil resource, Nanomater. Soil Remediat. (December), 65–85 (2020).

https://doi.org/10.1016/B978-0-12-822891-3.00004-9

Rana, S., Kalaichelvan, P. T., Ecotoxicity of Nanoparticles, ISRN Toxicol. 2013, 1–11 (2013).

https://doi.org/10.1155/2013/574648

Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., Abbas, F., Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review, J. Hazard. Mater. 322, 2–16 (2017).

https://doi.org/10.1016/j.jhazmat.2016.05.061

Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., Shehzad, F., Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, Environ. Sci. Pollut. Res. 22(6), 4122–4143 (2015).

https://doi.org/10.1007/s11356-014-3994-1

Shafique, M., Luo, X., Nanotechnology in transportation vehicles: An overview of its applications, environmental, health and safety concerns, Materials (Basel). 12(15), 11–17 (2019).

https://doi.org/10.3390/ma12152493

Shah, V., Collins, D., Walker, V. K., Shah, S., The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions, Environ. Res. Lett. 9(2), 024001 (2014).

https://doi.org/10.1088/1748-9326/9/2/024001

Sharma, V. K., Filip, J., Zboril, R., Varma, R. S., Natural inorganic nanoparticles-formation, fate, and toxicity in the environment, Chem. Soc. Rev. 44(23), 8410–8423 (2015).

https://doi.org/10.1039/c5cs00236b

Shen, C. X., Zhang, Q. F., Li, J., Bi, F. C., Yao, N., Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes, Am. J. Bot. 97(10), 1602–1609 (2010).

https://doi.org/10.3732/ajb.1000073

Silva, S., Almeida, A. J., Vale, N., Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review, Biomolecules 9(1), 1–24 (2019).

https://doi.org/10.3390/biom9010022

Singh, D., Kumar, A., Impact of Irrigation Using Water Containing CuO and ZnO Nanoparticles on Spinach oleracea Grown in Soil Media, Bull. Environ. Contam. Toxicol. 97(4), 548–553 (2016).

https://doi.org/10.1007/s00128-016-1872-x

Solano, R., Patiño-Ruiz, D., Tejeda-Benitez, L., Herrera, A., Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies, Environ. Sci. Pollut. Res. 28(14), 16962–16981 (2021).

https://doi.org/10.1007/s11356-021-12996-6

Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., Handy, R., Hankin, S., Hassellöv, M., Joner, E., Fernandes, T. F., Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation, Sci. Total Environ. 408(7), 1745–1754 (2010).

https://doi.org/10.1016/j.scitotenv.2009.10.035

Sun, T. Y., Gottschalk, F., Hungerbühler, K., Nowack, B., Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut. 185, 69–76 (2014).

https://doi.org/10.1016/j.envpol.2013.10.004

Thuesombat, P., Hannongbua, S., Akasit, S., Chadchawan, S., Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotoxicol. Environ. Saf. 104(1), 302–309 (2014).

https://doi.org/10.1016/j.ecoenv.2014.03.022

Tripathi, S., Champagne, D., Tufenkji, N., Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with pseudomonas aeruginosa biofilm, Environ. Sci. Technol. 46(13), 6942–6949 (2012).

https://doi.org/10.1021/es202833k

Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., Bracale, M., Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate, PLoS One, 8(7), (2013).

https://doi.org/10.1371/journal.pone.0068752

Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., Shi, J., Soil Biology & Biochemistry Distinctive effects of TiO 2 and CuO nanoparticles on soil microbes and their community structures in fl ooded paddy soil, Soil Biol. Biochem. (March), 1–10 (2015).

https://doi.org/10.1016/j.soilbio.2015.03.011

You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., Wang, L., Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types, J. Soils Sediments 18(1), 211–221 (2018).

https://doi.org/10.1007/s11368-017-1716-2

Yu, G., Wang, X., Liu, J., Jiang, P., You, S., Ding, N., Guo, Q., Lin, F., Applications of nanomaterials for heavy metal removal from water and soil: A review, Sustain. 13(2), 1–14 (2021).

https://doi.org/10.3390/su13020713

Zahoor, M., Nazir, N., Iftikhar, M., Naz, S., Zekker, I., Burlakovs, J., Uddin, F., Kamran, A. W., Kallistova, A., Pimenov, N., Khan, F. A., A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment, Water (Switzerland) 13(16), 1–28 (2021).

https://doi.org/10.3390/w13162216

Zhang, J., Guo, W., Li, Q., Wang, Z., Liu, S., The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms, Environ. Sci. Nano 5(11), 2482–2499 (2018).

https://doi.org/10.1039/c8en00688a

Zhao, N., Yan, L., Zhao, X., Chen, X., Li, A., Zheng, D., Zhou, X., Dai, X., Xu, F. J., Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications, Chem. Rev. 119(3), 1666–1762 (2019).

https://doi.org/10.1021/acs.chemrev.8b00401

Contact Us

Powered by

Powered by OJS