An Analysis of Structural Rehabilitation and Repair Projects Involving Carbon Fiber Reinforced Concrete
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 339-348
Abstract
Since plain concrete is brittle by nature, the flexural and split tensile strengths developed must be taken into consideration. Plain concrete is robust in solidity; nevertheless, with feeble cutting-edge tautness. Numerous fibres are commonly utilized in the construction sector to enhance concrete's flexural strength, ductile strength and durability properties. The great tensile strength of steel fiber makes it the fiber of choice for usage in the building industry. However, steel fibre has some disadvantages, including a propensity for corrosion. Carbon fibre is a promising substitute for fiber-reinforced concrete when compared to other fibers due to its corrosion resistance, low density, and superior tensile strength. According to the evaluation work conducted by numerous reviewers, carbon has only very few applications. This study gives an overview of carbon fiber, its structural uses in restoration and repair projects and the various characteristics of fiber-reinforced concrete with carbon. The strength, toughness, and flexural properties of carbon fiber as well as the feasibility research on repair and rehabilitation work using various carbon fibers have been reviewed.
Full Text
Reference
Al-Jasmi, S., Farhayu Ariffin, N., Abu Seman, M., Model analysis of carbon fiber reinforcement properties for reinforced concrete beams to resist blast loads, Mater Today Proc. (2023).
https://doi.org/10.1016/j.matpr.2023.06.326
Al-Shamayleh, R., Al-Saoud, H., Abdel-Jaber, M., Alqam, M., Shear and flexural strengthening of reinforced concrete beams with variable compressive strength values using externally bonded carbon fiber plates, Results Eng. 14, 100427 (2022).
https://doi.org/10.1016/j.rineng.2022.100427
Almushaikeh, A. M., Alaswad, S. O., Alsuhybani, M. S., AlOtaibi, B. M., Alarifi, I. M., Alqahtani, N. B., Aldosari, S. M., Alsaleh, S. S., Haidyrah, A. S., Alolyan, A. A., Alshammari, B. A., Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review, Polym. Test. 122, 108029 (2023).
https://doi.org/10.1016/j.polymertesting.2023.108029
Ateeq, M., Shafique, M., Azam, A., Rafiq, M., A review of 3D printing of the recycled carbon fiber reinforced polymer composites: Processing, potential, and perspectives, J. Mater. Res. Technol. 26, 2291–2309 (2023).
https://doi.org/10.1016/j.jmrt.2023.07.171
Baritto, M., Oni, A. O., Kumar, A., Estimation of life cycle greenhouse gas emissions of asphaltene-based carbon fibers derived from oil sands bitumen, Sustain. Mater. Technol. 36, e00627 (2023).
https://doi.org/10.1016/j.susmat.2023.e00627
Chen, Z., Tu, Q., Shen, X., Fang, Z., Bi, S., Yin, Q., Zhang, X., Enhancing the thermal and mechanical properties of carbon fiber/natural rubber composites by co-modification of dopamine and silane coupling agents, Polym. Test. 126, 108164 (2023).
https://doi.org/10.1016/j.polymertesting.2023.108164
Du, Y., Lu, S., Xu, J., Xia, W., Wang, T., Wang, Z., Experimental study of impact mechanical and microstructural properties of modified carbon fiber reinforced concrete, Sci. Rep. 12(1), 12928 (2022).
https://doi.org/10.1038/s41598-022-17092-4
Fukui, K., Nonami, R., Simultaneous Optimization of Carbon Fiber Allocation and Orientation by IFM-GA, Chinese J. Mech. Eng. Addit. Manuf. Front. 2(2), 100078 (2023).
https://doi.org/10.1016/j.cjmeam.2023.100078
Gómez-García, D., Díaz-Álvarez, A., Youssef, G., Miguélez, H., Díaz-Álvarez, J., Machinability of 3D printed peek reinforced with short carbon fiber, Compos. Part C Open Access 12, 100387 (2023).
https://doi.org/10.1016/j.jcomc.2023.100387
Gwon, S., Kim, H., Shin, M., Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber, Cem. Concr. Compos. 137, 104942 (2023).
https://doi.org/10.1016/j.cemconcomp.2023.104942
Huang, L., Tang, L., Bachinger, A., Li, Y., Yang, Z., Improving the performance of alkali-activated slag mortar with electro/chemically treated carbon fiber textile, J. Clean. Prod. 418, 138214 (2023).
https://doi.org/10.1016/j.jclepro.2023.138214
Johansen, M., Singh, M. P., Xu, J., Asp, L. E., Gault, B., Liu, F., Unravelling lithium distribution in carbon fibre electrodes for structural batteries with atom probe tomography, Carbon N. Y. 225, 119091 (2024).
https://doi.org/10.1016/j.carbon.2024.119091
Jongvivatsakul, P., Thongchom, C., Mathuros, A., Prasertsri, T., Adamu, M., Orasutthikul, S., Lenwari, A., Charainpanitkul, T., Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites, Case Stud. Constr. Mater. 17, e01407 (2022).
https://doi.org/10.1016/j.cscm.2022.e01407
Kandemir, S., Bohlen, J., Dieringa, H., Influence of recycled carbon fiber addition on the microstructure and creep response of extruded AZ91 magnesium alloy, J. Magnes. Alloy. 11(7), 2518–2529 (2023).
https://doi.org/10.1016/j.jma.2023.06.004
Kazemi, M. E., Medeau, V., Mencattelli, L., Greenhalgh, E., Robinson, P., Finlayson, J., Pinho, S. T., Novel zone-based hybrid laminate structures for high-velocity impact (HVI) in carbon fibre-reinforced polymer (CFRP) composites, Compos. Sci. Technol. 241, 110148 (2023).
https://doi.org/10.1016/j.compscitech.2023.110148
Madika, B., Syahrial, A. Z., Study of aluminum/kevlar fiber composite laminate with and without TiC nanoparticle impregnation and aluminum/carbon fiber composite laminate for anti-ballistic materials, Int. J. Light. Mater. Manuf. 7(1), 62–71 (2024).
https://doi.org/10.1016/j.ijlmm.2023.06.001
Olcun, S., Ibrahim, Y., Isaacs, C., Karam, M., Elkholy, A., Kempers, R., Thermal conductivity of 3D-printed continuous pitch carbon fiber composites, Addit. Manuf. Lett. 4, 100106 (2023).
https://doi.org/10.1016/j.addlet.2022.100106
Sha, Z., Cheng, X., Islam, M. S., Sangkarat, P., Chang, W., Brown, S. A., Wu, S., Zhang, J., Han, Z., Peng, S., Wang, C. H., Synergistically enhancing the electrical conductivity of carbon fibre reinforced polymers by vertical graphene and silver nanowires, Compos. Part A Appl. Sci. Manuf. 168, 107463 (2023).
https://doi.org/10.1016/j.compositesa.2023.107463
Wang, L., Shao, G., Test research on flexural strength of soil-cement reinforced with carbon fibers, Case Stud. Constr. Mater. 19, e02280 (2023).
https://doi.org/10.1016/j.cscm.2023.e02280
Wesley, C., Pahlevani, F., Nur-A-Tomal, S., Biswal, S., Sahajwalla, V., An investigation into the minimum energy requirements for transforming end-of-life cotton textiles into carbon fibre in an Australian context, Resour. Conserv. Recycl. Adv. 17, 200123 (2023).
https://doi.org/10.1016/j.rcradv.2022.200123
Zhang, Q., Yang, Q.-C., Li, W.-J., Gu, X.-L., Dai, H.-H., Study on model of flexure response of carbon fiber textile reinforced concrete (CTRC) sheets with short AR-glass fibers, Case Stud. Constr. Mater. 18, e01791 (2023).
https://doi.org/10.1016/j.cscm.2022.e01791
Žmindák, M., Pastorek, P., Finite Element Analysis of Cohesion between Reinforced Concrete Beam and Polymer Lamella Reinforced by Carbon Fibers, Procedia Eng. 177, 582–589 (2017).