Box-Behnken Design for Photocatalytic Degradation of Sudan Black B by Catalyst-Embedded Multiwalled Carbon Nanotubes
J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 213-225
Abstract
This research employs a Box Behnken design-based technique for photocatalytic use of Multiwalled Carbon Nanotubes (MWCNTs) derived from spray pyrolysis. This procedure was used for photocatalytic degradation applications on Sudan black dye using Citrus limonum oil as a carbon precursor and Fe/Co/Mo supported on silica as a catalyst. The influence of initial dye concentration was compared to the effects of H2O2, catalyst concentration and solar light intensity. The Response Surface Methodology was used to optimize growth parameters for higher yield and graphitization. The as-grown CNTs were exemplified using scanning and transmission electron microscopy and Raman spectroscopy. This work resulted in the identification of the optimal set of spray pyrolysis turning parameters for achieving high CNT yield and effective decolorization of Sudan black B dye by employing MWCNTs as catalyst. The degree of decolorization of Sudan black B dye increases upto a certain level with an increase in initial H2O2 concentration and subsequently declines as excess H2O2 hydroxyl radicals formed serve as scavengers, resulting in less dye decolonization.
Full Text
Reference
Aarthi, T., Narahari, P. and Madras G., Photocatalytic degradation of Azure and Sudan dyes using nano TiO2, J. Hazard Mater., 149(3), 725-734 (2007).
https://doi.org/10.1016/j.jhazmat.2007.04.038
Ahmad, N., Mohammad, H., Ebrahim, A. A. and Hamed, B., Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes, Sep. Purif. Technol., 221, 101–113 (2019).
https://doi.org/10.1016/j.seppur.2019.03.075
Amirhasan, N., Bahram, G., Mostafa, Z. and Ezatollah, A., Morphology Optimization of CCVD-Synthesized multiwall carbon nanotubes, using statistical design of experiments, Nanotechnol., 18 (11), 115715 (2007).
https://doi.org/10.1088/0957-4484/18/11/115715
Aqel, AAbou, E. N. K. M. M., Ammar, R. A. A. and Warthan, A. A., Carbon nanotubes, science and technology part (I) structure, synthesis and characterization, Arabian J. Chem., 5(1), 1–23 (2012).
https://doi.org/10.1016/j.arabjc.2010.08.022
Arunachalam, S., Gupta, A. A., Izquierdo, R. and Nabki, F., Suspended Carbon Nanotubes for Humidity Sensing, Sens., 18(5), 1-11 (2018).
https://doi.org/10.3390/s18051655
César, R. T. T., Vivian, S. S., Bruno, E. L. B., Arnaldo, C. P. and Lauro, T. K., Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode, J. Hazard. Mater., 169( 1–3), 256-262 (2009).
https://doi.org/10.1016/j.jhazmat.2009.03.077
Chaudhary, D., Khare, N. and Vankar, V. D., Ag nanoparticles loaded TiO2/MWCNT ternary nanocomposite: a visible-light-driven photocatalyst with enhanced photocatalytic performance and stability, Ceram. Int., 42 (14), 15861–15867 (2016).
https://doi.org/10.1016/j.ceramint.2016.07.056
Chen, S., Shan, B., Yang, Y., Yuan, G., Huang, S., Lu, X., Zhang, Y., Fu, Y., Ye, L. and Liu, J., An overview of carbon nanotubes based interconnects for microelectronic packaging, 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), Gothenburg, Sweden, 18–20, 113–119 (2017).
https://doi.org/10.1109/NORDPAC.2017.7993175
Choi, J., Park, B. C., Ahn, S. J., Kim, D. H., Lyou, J., Dixson, R. G., Orji, N. G., Fu, J. and Vorburger, T. V., Evaluation of carbon nanotube probes in critical dimension atomic force microscopes, J. Micro/Nanolithogr. MEMS MOEMS, 15(3), 1-13 (2016).
https://doi.org/10.1117/1.JMM.15.3.034005
Chua, M., Chui, C. K., Chng, C. B. and Lau, D., Carbon nanotube-based artificial tracheal prosthesis: Carbon nanocomposite implants for patient-specific ENT care, IEEE Nanotechnol. Mag., 7(4), 27–31 (2013).
https://doi.org/10.1109/MNANO.2013.2289691
Coville, N. J., Mhlanga, S. D., Nxumalo, E. N. and Shaikjee, A., A review of shaped carbon nanomaterials, S. Afr. J. Sci., 107(3-4), 1–15 (2011).
http://dx.doi.org/10.4102/sajs.v107i3/4.418
Donaldson, K., Aitken, R., Tran, L., Stone, V, Duffin, R., Forrest, G. and Alexander, A., Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety, Toxicol. Sci., 92(1), 5–22 (2006).
https://doi.org/10.1093/toxsci/kfj130
Ghosh. P., Soga. T., Rakesh. A. and Afre, J. T., Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil, J. Alloys Compd., 462(1-2), 289-293 (2008).
https://doi.org/10.1016/j.jallcom.2007.08.027
Goh, T. N., A Pragmatic approach to experimental design in industry, J. Appl. Stat., 28(3) 391-398 (2001).
https://doi.org/10.1080/02664760120034126
Gupta, N., Gupta, S. M. and Sharma, S. K., Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett., 29, 419–447 (2019).
https://doi.org/10.1007/s42823-019-00068-2
Hayati, F., Isari, A. A., Anvaripour, B., Fattahi, M. and Kakavandi, B., Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies, Chem. Eng. J., 381, 122636, (2020).
https://doi.org/10.1016/j.cej.2019.122636
Journet, C., Maser, W., Bernier, P., Loiseau, A., De, L., Chapelle, M. L., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nat., 388, 756–758 (1997).
Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Botanical hydrocarbon sources based MWCNTs synthesized by spray pyrolysis method for DSSC applications, Silicon, 10(2), 211-217 (2018).
https://doi.org/10.1007/s12633-016-9419-7
Karthikeyan, S., Kalaiselvan, S., Anitha, K., Shanthi, P. and Shabudeen, P. S., Morphology of entangled multiwalled carbon nanotubes by catalytic spray pyrolysis using madhuca longifolia oil as a precursor, Rasayan J. Chem., 7(4), 333-339 (2014).
Ketabi, S. and Rahmani, L., Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study, Mater. Sci. Eng C., 73, 173–181 (2017).
https://doi.org/10.1016/j.msec.2016.12.058
Kumar, M. and Ando, Y., Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support, Carbon, 43(3), 533-540 (2005).
https://doi.org/10.1016/j.carbon.2004.10.014
Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K. and Kim, K. H., Carbon nanotubes: A potential material for energy conversion and storage, Prog. Energy Combust. Sci., 64, 219–253 (2018).
https://doi.org/10.1016/j.pecs.2017.10.005
Kumar. M., Okazaki, T., Hiramatsu, M. and Ando, Y., The use of camphor-grown carbon nanotube array as an efficient field emitter, Carbon, 45(9), 1899-1904 (2007).
https://doi.org/10.1016/j.carbon.2007.04.023
Lee, J., Kim, T., Jung, Y., Jung, K., Park, J., Lee, D. M., Jeong, H. S., Hwang, J. Y., Park, C. R. and Lee, K. H., High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration, Nanoscale, 8, 18972–18979 (2016).
https://doi.org/10.1039/C6NR06479E
Li, W. Z., Wen, J. G. and Ren, Z. F., Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition, Appl.Phys. A, 74, 397-402 (2002).
https://doi.org/10.1007/s003390201284
Mageswari. S., Kalaiselvan. S., Shabudeen, P. S. S., Sivakumar. N. and Karthikeyan, S., Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal, Mater. Sci. Poland, 32(4), 709-718 (2014).
https://doi.org/10.2478/s13536-014-0235-8
Moise, C., Rachmani, L., Mihai, G., Lazar, O., Enăchescu, M. and Naveh, N., Pulsed laser deposition of SWCNTs on carbon fibres: Effect of deposition temperature, Polym., 13(7), 1-13 (2021).
https://doi.org/10.3390/polym13071138
Othman, C. S., Al, H., Isaiah, O. A. and Tawfik, A. S., Novel cross-linked melamine based polyamine/CNT composites for lead ions removal, J. Environ. Manage., 192, 163-170 (2017).
https://doi.org/10.1016/j.jenvman.2017.01.056
Padmavathi, R. Raja, R., Kalaivanan, C. and Kalaiselvan, S., Syzygium Cumini leaf extract exploited in the green synthesis of zinc oxide nanoparticles for dye degradation and antimicrobial studies, Mater. Today Proc., 69(3), 1200-1205 (2022).
https://doi.org/10.1016/j.matpr.2022.08.257
Padmavathi, R., Sharmil, L. I., Prasad, S., Thamarai, S. M. and Kalaiselvan, S., Utilization of solar energy for photodegradation of basic violet 10 using tin oxide doped ZnO, J. Ovonic Res., 17(3), 261-271 (2021).
https://doi.org/10.15251/jor.2021.173.261
Piedigrosso, P., Knoya, Z., Colomer, J. F., Fonseca, A., Tendeloo, G. V. and Nagy, J. B., Production of differently shaped multiwall carbon nanotubes using various cobalt supported catalysts, PCCP, 2(1), 163-170 (2000).
https://doi.org/10.1039/A905622J
Rakesh, A. A., Soga, T., Jimbo, T., Mukulkumar, Ando, Y., Sharon, M., Prakash, R. S. and Umeno, M., Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microporous Mesoporous Mater., 96, 1-3, 184-190 (2006).
https://doi.org/10.1016/j.micromeso.2006.06.036
Sachin, G. S., Maheshkumar, P. P., Gun, D. K. and Vinod, S. S., Ni, C, N, S multi-doped ZrO2 decorated on multi-walled carbon nanotubes for effective solar induced degradation of anionic dye, J. Environ. Chem. Eng., 8(3), 103769 (2020).
https://doi.org/10.1016/j.jece.2020.103769
Sankeerthana, B., Nithya, T., Hafeez, Y. H., Neppolian, B. and Ranga, R. G., Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting, Catal. Today, 321, 120-127 (2019).
https://doi.org/10.1016/j.cattod.2017.10.023
Shaban, M., Ashraf, A. M., Mostafa, R. A., TiO2 Nanoribbons/Carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization and application, Sci. Rep., 8, 1-17 (2018).
https://doi.org/10.1038/s41598-018-19172-w
Suhila, A., Aïcha, M., Elbashir, E., Ali, S., Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation, Heliyon, 6(4), e03663 (2020).
https://doi.org/10.1016/j.heliyon.2020.e03663
Sun, Y., Yun, K. N., Leti, G., Lee, S. H., Song, Y. H. and Lee, C. J., High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler, Nanotechnol., 28(6), 065201 (2017).
https://doi.org/10.1088/1361-6528/aa523e
Uthayakumar, H., Radhakrishnan, P., Shanmugam, K. and Kushwaha, O. S., Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using machine learning approach, Environ. Sci. Pollut. Res. Int., 29, 34841-34860 (2022).
https://doi.org/10.1007/s11356-021-17873-w
Wei, W. L., Azizan, A., Siang, P. C., Abdul, R. M. and Ching, T. T., Optimization of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, Can. J. Chem. Eng., 90(2), 489-505 (2012).
https://doi.org/10.1155/2013/592464
Willems, I., Konya, Z., Colomer, J. F., Tendeloo, G. V., Nagaraju, N., Fonseca, A. and Nagy, J. B., Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, AIP Conf. Proc., 544, 242-245 (2000).
https://doi.org/10.1063/1.1342509
Xu, J. L., Dai, R. X., Xin, Y., Sun, Y. L., Li, X., Yu, Y. X., Xiang, L., Xie, D., Wang, S. D. and Ren, T. L., Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using deca methylcobaltocene. Sci. Rep., 7, 6751 (2017).
https://doi.org/10.1038/s41598-017-05967-w
Yanase, T., Miura, T., Shiratori, T., Weng, M., Nagahama, T. and Shimada, T., Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition using Fe1−xMnxO nanoparticles as catalysts: How does the catalytic activity of graphitization affect the yields and morphology?, Carbon, 5(3), 46 (2019).
https://doi.org/10.3390/c5030046
Zhao, T., Ji, X., Jin, W., Yang, W. and Li, T., Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge, Fuller. Nanotubes Carbon Nanostruct., 25(6), 355–358 (2017).